Задача по расшифровке генетического кода

М.С.Гельфанд

Перед Вами данные, доступные исследователям генетического кода на начало 1960 г., непосредственно перед опытом по прямому анализу аминокислот, кодируемых кодонами (нуклеотидными триплетами). Эти данные слегка идеализированы: удалены недостоверные данные и добавлено небольшое количество данных, полученных при проверки уже открытого кода. Тем не менее ситуация сильно напоминает ту, в которой оказались первые исследоваетли, пытавшиеся расшифровать генетический код.

Представлены четыре типа данных. Первый – последовательности полипептидов, кодируемые регулярной нуклеотидной последовательностью с известной структурой. Второй – смеси полипептидов, кодируемые нерегулярной нуклеотидной последовательностью с известным соотношением нуклеотидов (обратите внимание: эти данные неполные, для нуклеотидной послеовательности могут быть представлены не все пептиды, получающиеся из нее.) Третий тип данных – мутации в генах, вызываемые азотистой кислотой. Такие мутации могут менять А на G и C на U, приводя к изменениям в кодонах и, соответственно, в аминокислотных последовательностях, кодируемых данными генами. Четвертый вариант – результаты спонтанных (случайных) мутаций (эти данные могут быть использованы для проверки правильности расшифровки генетического кода.)

Ваша задача — реконструировать таблицу генетического кода, выяснив соответсвие между кодонами и аминокислотами. Представленные данные не позволяют расшифровать генкод полностью, но Вы должны стремиться разгадать значение как можно большего числа кодонов.

Данные:

1а. Следующие регулярные полинуклеотиды дают следующие полипептиды

	короткое	нуклеотидная	аминокислотная последовательность(и)
	название	последовательность	
1	polyU	บบบบบบบบบบบบบบ	Phe-Phe-Phe-Phe-Phe-Phe-Phe
2	polyA	AAAAAAAAAAA	Lys-Lys-Lys-Lys-Lys-Lys-Lys
3	polyC	CCCCCCCCCCCC	Pro-Pro-Pro-Pro-Pro-Pro-Pro-Pro
4	polyUC	UCUCUCUCUCUCU	Leu-Ser-Leu-Ser-Leu-Ser-Leu
5	polyUG	UGUGUGUGUGU	Val-Cys-Val-Cys-Val-Cys-Val
6	polyAC	ACACACACACACA	Thr-His-Thr-His-Thr-His-Thr
7	polyAG	AGAGAGAGAGA	Arg-Glu-Arg-Glu-Arg-Glu-Arg
8	polyUUAC	UUACUUACUUACU	Leu-Leu-Thr-Tyr-Leu-Leu-Thr-Tyr-Leu
9	polyUAUC	UAUCUAUCUAUCU	Tyr-Leu-Ser-Ile-Tyr-Leu-Ser-Ile-Tyr

1b. Следующие регулярные полинуклеотиды кодируют следующие регулярные полипептиды

10	~ ~ 1 7 7 C	AAGAAGAAGAAGA	
10	polyAAG	AAGAAGAAGAA	Arg-Arg-Arg-Arg-Arg-Arg-Arg-Arg
			Lys-Lys-Lys-Lys-Lys-Lys-Lys
			Glu-Glu-Glu-Glu-Glu-Glu-Glu
11	polyUAC	UACUACUACUACU	Leu-Leu-Leu-Leu-Leu-Leu-Leu-Leu
			Thr-Thr-Thr-Thr-Thr-Thr-Thr-Thr
			Tyr-Tyr-Tyr-Tyr-Tyr-Tyr-Tyr-Tyr-Tyr
12	polyGUA	GUAGUAGUAG	Val-Val-Val-Val-Val-Val-ValWal
			Ser-Ser-Ser-Ser-Ser-Ser-Ser-ser
13	polyAUC	AUCAUCAUCAUCA	Ser-Ser-Ser-Ser-Ser-Ser-Ser-ser
			Ile-Ile-Ile-Ile-Ile-Ile-Ile-Ile
			His-His-His-His-His-His-His
14	polyGAU	GAUGAUGAUGAUG	Asp-Asp-Asp-Asp-Asp-Asp-Asp-Asp
			Met-Met-Met-Met-Met-Met-Met
15	polyUUG	UUGUUGUUGUUGU	Leu-Leu-Leu-Leu-Leu-Leu-Leu-Leu
			Val-Val-Val-Val-Val-Val-ValVal
			Cys-Cys-Cys-Cys-Cys-Cys-Cys-Cys
16	polyCAA	CAACAACAACAAC	Thr-Thr-Thr-Thr-Thr-Thr-Thr-Thr
			Asn-Asn-Asn-Asn-Asn-Asn-Asn-Asn
			Gln-Gln-Gln-Gln-Gln-Gln-Gln
17	polyUUC	UUCUUCUUCUUCU	Ser-Ser-Ser-Ser-Ser-Ser-Ser-ser
			Leu-Leu-Leu-Leu-Leu-Leu-Leu-Leu
			Phe-Phe-Phe-Phe-Phe-Phe-Phe

1с. Два регулярных полинуклеотида, которые не дают длинных пептидов (в основном продуцируются пептиды длиной в три аминокислоты):

18	polyGUAA	GUAAGUAAGUAAG
19	polyGAUA	GAUAGAUAGAUAG

2. Следующие нерегулярные полинуклеотиды (фракция преобладающего нуклеотида 80%) продуцируют нерегулярные полипептиды указанного состава:

	преобладающий остальные преобладающая		редкая(ие)	очень редкая(ие)	
	нуклеотид.	нуклеотиды.	аминокислота	аминокислота(ы)	аминокислота(ы)
1	U	С	Phe	Ser, Leu	Pro
2	U	А	Phe	Leu, Ile,	Asn
				Tyr	
3	U	G	Phe	Cys, Val,	Gly, Trp
				Leu	
4	A	U	Lys	Asn, Ile	Leu, Tyr
5	А	G	Lys	Arg, Glu	Gly
6	А	С	Lys	Asp, Gln,	His, Pro
				Thr	

3. Мутации в белке оболочки вируса табачной мозаики, вызванные превращениями $A \rightarrow G$ и $C \rightarrow U$:

Было	Стало
Ala	Val
Asp	Gly
Glu	Gly
Ile	Val, Met
Lys	Arg
Met	Val
Asn	Ser
Pro	Leu, Ser
Gln	Arg
Arg	Gly
Ser	Gly, Leu, Phe
Thr	Ala, Met, Ile
Tyr	Cys

Та же таблица в другом формате:

Было				Стало
Thr				Ala
Tyr				Cys
Ser				Phe
Glu,	Arg,	Asp,	Ser	Gly
Thr				Ile
Pro,	Ser			Leu
Thr,	Ile			Met
Lys,	Gln			Arg
Asn,	Pro			Ser
Ile,	Met,	Ala		Val

4. Сводные данные по спонтанным мутациям в различных белках (триптофан-синтаза *Escherichia coli* и гемоглобин человека)

Было	Стало
Ala	Asp, Val, Glu
Cys	Gly
Asp	Gly, Ala, Asn
Glu	Gln, Val, Stop, Gly, Ala, Asp, Lys
Phe	Leu
Gly	Val, Glu, Arg, Asp, Cys
His	Tyr, Arg, Asp, Asn
Ile	Thr, Ser, Asn
Lys	Glu, Asn, Gln
Leu	Arg, Phe
Asn	Lys, Ser
Pro	Gln
Gln	Glu, Arg
Arg	Ile, Gly, Thr, Ser
Ser	Arg, Leu, Phe, Thr
Thr	Ile, Lys, Asn, Ser
Val	Ala, Gly, Asp, Glu
Tyr	Cys

Существуют два общепринятых формата таблицы генетического кода . Я уже заполнил наиболее очевидные клетки.

аминоксилота	трехбуквенное обозначение	однобуквенное обозначение	кодон(ы)	
Аланин	Ala	А		
Аргинин	Arg	R		
Аспарагин	Asn	N		
Аспартат (аспарагиновая кислота)	Asp	D		
Валин	Val	V		
Гистидин	His	Н		
Глицин	Gly	G		
Глутамат (глутаминовая кислота)	Glu	E		
Глутамин	Gln	Q		
Изолейцин	Ile	I		
Лейцин	Leu	L		
Лизин	Lys	K	AAA	
Метионин	Met	M		
Пролин	Pro	P	CCC	
Серин	Ser	S		
Тирозин	Tyr	Y		
Треонин	Thr	Т		
Триптофан	Trp	W		
Фенилаланин	Phe	F	UUU	
Цистеин	Cys	С		

UUU	Phe	UCU		UAU		UGU
UUC		UCC		UAC		UGC
UUA		UCA		UAA		UGA
UUG		UCG		UAG		UGG
CUU		CCU		CAU		CGU
CUC		CCC	Pro	CAC		CGC
CUA		CCA		CAA		CGA
CUG		CCG		CAG		CGG
AUU		ACU		AAU		AGU
AUC		ACC		AAC		AGC
AUA		ACG		AAA	Lys	AGA
AUG		ACA		AAG		AGG
GUU		GCU		GAU		GGU
GUC		GCC		GAC		GGC
GUA		GCA		GAA		GGA
GUG		GCG		GAG		GGG