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Abstract—In the Wicksell problem, it is required to reconstruct a distribution function of
radii of balls located in an opaque medium from measurements of radii of circles obtained
by intersecting the medium with a certain plane. This problem is intimately bound up with
estimating a fractional derivative of order 1/2 for a distribution function concentrated on the
positive semi-axis. In this paper, the locally asymptotically minimax risk in the Wicksell
problem is evaluated up to a constant. Estimators on which this risk is attained are also
constructed.

1. INTRODUCTION

The Wicksell problem [1] is one of the known inverse (statistical) problems. In this problem,
it is required to reconstruct a distribution function of radii of balls located in an opaque medium.
These radii are independent identically distributed random variables. The obstacle consists in
impossibility to directly measure the ball radii since the medium is opaque. However, it is possible
to measure radii of circles in the intersection of the medium with a certain hyperplane P in R3. For
definiteness, we will assume that centers of random balls Bi = Bi(vi, Ri), i = 1, . . . , n, are located
at random points vi which are a realization of a stationary Poisson process in R3 and squares
of ball radii are independent random variables Yi = R2

i with an unknown distribution function
F (y), y ∈ R+. The problem is to reconstruct the function F (y) for all y > 0 from observations
of squares of circle radii Xi = r2

i in the intersection. In [2–4], some applications of the Wicksell
problem in biology, stereology, etc., are discussed.

By symmetry of the problem, we choose the coordinate system in R3 in such a way that P =
{v : v3 = 0} and denote by Si = S(ui, ri), ui = (vi1, vi2), the circles in the intersection Bi ∩ P.
Let G(x) be the distribution function of squares of circle radii Xi = r2

i . Denote by λ the rate of a
Poisson process in R3. Then it easily seen that we have the following equalities:

P{X1 > x | S1 is observed in v11 ∈ (w1, w1 + dw1), v12 ∈ (w2, w2 + dw2)}

=
P{v11 ∈ (w1, w1 + dw1), v12 ∈ (w2, w2 + dw2), |v13| <

√
Y1 − x}

P{v11 ∈ (w1, w1 + dw1), v12 ∈ (w2, w2 + dw2), |v13| <
√
Y1}

=
2λdw1dw2

∞∫
x

√
y − x dF (y)

2λdw1dw2

∞∫
0

√
y dF (y)

=

∞∫
x

√
y − x dF (y)

∞∫
0

√
y dF (y)

.

Therefore, the distribution functions F and G are connected by the integral equation

1−G(x) =

∞∫
x

√
y − x dF (y)

∞∫
0

√
y dF (y)

. (1)
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ASYMPTOTICALLY EFFICIENT SMOOTHING IN THE WICKSELL PROBLEM 25

Let the distribution function F be Lipschitzian with smoothness greater than 1/2, then equa-
tion (1) can be solved directly. Its solution can be represented as

1− F (y) =
DG(y)
DG(0)

, (2)

where

DG(y) =
1√
π

∞∫
y

dG(x)√
x− y (3)

is the derivative of order 1/2 for the function G(y) at the point y (see e.g., [5]). Formula (2) can
easily be proved. Taking into account that F is Lipschitzian with smoothness greater than 1/2, it
is not difficult to show that G is differentiable and its derivative is equal to

g(x) = G′(x) =
1

2E
√
Y1

∞∫
x

dF (y)√
y − x. (4)

Using this formula, we obtain

∞∫
y

dG(x)√
x− y =

1
2E
√
Y1

∞∫
y

1√
x− y

∞∫
x

dF (z)√
z − xdx

=
1

2E
√
Y1

∞∫
y

z∫
y

dx√
(z − x)(x− y)

dF (z) =
π[1− F (y)]

2E
√
Y1

, (5)

which proves (2).
Actually, our problem can now be formulated in very simple way: it is required to estimate

the derivative of order 1/2 of a distribution function from observations of random variables Xn =
X1, . . . ,Xn. Below, we consider the situation where the number of observations is large, i.e., n→∞.
In spite of sustained efforts, an asymptotically precise solution of the Wicksell problem at a fixed
point was only recently obtained [6] though the orders of convergence rates were found rather long
ago [7].

In this paper, we consider the problem of estimating in L2(0,∞) since qualitative behavior of a
distribution function is usually more interesting than the value of this function at a fixed point. The
risk of an estimator F̃ (y,Xn) for a distribution function F will be measured by its mean-square
error

Rn(F̃ , F ) = E
∞∫
0

[F̃ (y,Xn)− F (y)]2dy.

Below, we use a locally-minimax setting of the problem. Denote by ‖·‖ the ordinary norm in
L2(0,∞). Define also the norm ‖·‖β for distribution functions by the formula

‖F‖β = ‖1− F‖+ ‖F (β)‖,

where F (β)(x) is the derivative of order β of the function F (x).
Let us fix a distribution function F0 such that ‖F0‖β < ∞ and define its neighborhood Bε(F0)

as
Bε(F0) =

{
F : ‖F − F0‖β ≤ ε

}
.
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26 GOLUBEV, ENIKEEVA

Let Fε(C) be the set of distribution functions such that

∞∫
0

x3/2+εdF (x) ≤ C. (6)

Here and below, C denotes a constant whose value is not significant. Our goal is to evaluate the
locally minimax risk

r(F0) = lim
ε→0

lim
n→∞

inf
F̃

sup
F∈Bε(F0)∩Fε(C)

n

log n
Rn(F̃ , F ),

where the infimum is taken over all estimates, and to construct estimators on which r(F0) is
attained.

Formulas (2) and (3) suggest a simple method for constructing estimates but this method is
too naive to succeed. Indeed, instead of the distribution function for squares of circle radii, which
we, naturally, do not know, it is possible to substitute its estimate, i.e., the empirical distribution
function

Gn(x) =
1
n

n∑
i=1

1{Xi < x}.

Thus we arrive at the following estimator for the derivative of order 1/2:

DGn(y) =
1

n
√
π

n∑
i=1

1√
Xi − y

1{Xi > y}.

It is not difficult to check that this estimator is unbiased but, unfortunately, its variance is un-
bounded. Moreover, the function obtained by substitution of this estimator into (2) is undoubtedly
not a distribution function since DGn(y) infinitely grows as y draws near to any of Xi. A natural
way to overcome this nuisance is to try to smooth out DGn(y) by means of a certain filter. Actually,
we use two different filters. The first one is used to estimate the derivative DG(0) at the origin
and the second one is used to reconstruct DG(y) on the semiaxes. We use the following estimator
for the derivative of order 1/2:

D̂G(y, µ) = arg min
m

{
‖m−DGn‖2 + µ‖m(β)‖2

}
, (7)

where µ is a smoothing parameter which will be chosen later. Actually, there are two principal
reasons why we choose precisely this estimator. On one hand, the minimization problem of (7)
can be solved numerically rather fast since its solution can be reduced to computations using band
matrices [8]. The second reason is statistical. It is connected with a boundary effect. The function
DG(x) need not be smooth in a neighborhood of the origin. Therefore, classical kernel estimates
with symmetrical kernels cannot be used directly.

Having the estimators D̂G(y, µ1) and D̂G(0, µ2) in our disposition, we can now apply formula (2)
to estimate the distribution function. Moreover, it should be noted that, in principle, the estimator
D̂G(0, µ2) may be very close to zero but the probability of this event is small. Therefore, to avoid
dividing by zero, let us define the estimator of the distribution function F by the equality

F̂µ1,µ2(y,Xn) =

[
1− nD̂G(y, µ1)

n|D̂G(0, µ2)|+ 1

]1

0

, (8)

where [x]10 = min[1,max(0, x)] is a projection of x onto the segment [0, 1].
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2. MAIN RESULTS

Let g0(x) be the probability density of circles corresponding to the distribution function F0

(see [4]), i.e.,

g0(x) =
1
2

∞∫
x

(y − x)−1/2dF0(y)
/ ∞∫

0

√
y dF0(y).

Note that g0(0) > 0. Below, we will not specially mention this. Set

σ2(F0) =
4
π2

 ∞∫
0

√
y dF0(y)

2(
g0(0)‖1 − F0‖2

2β − 1
+

1
2β

)
.

The risk of the estimator F̂µ1,µ2(y,Xn) can be evaluated as follows.

Theorem 1. Assume that ‖F0‖β <∞, β ∈ N, β ≥ 1. Then for estimator (8) we have

lim
ε→0

lim
n→∞

sup
F∈Bε(F0)∩Fε(C)

n

log n
Rn(F̂µ1,µ2 , F ) ≤ σ2(F0) (9)

if µ1 � n−1 and µ2 � n−2β/(2β−1).

Finally, the following theorem states that F̂µ1,µ2(y,Xn) is a locally asymptotically minimax
estimator.

Theorem 2. Assume that ‖F0‖β <∞, β ∈ N, β ≥ 2. Then r(F0) = σ2(F0).

Remark 1. Theorem 2 remains also valid for β = 1 but we do not present here the proof of this
fact in order to avoid further complication of technically tedious (even without this assumption)
calculations used in the proof of this theorem.

Comparing these results with [6, 7], we observe that the order of convergence rate
√

log n/n in
the L2 norm for the Wicksell problem coincides with the convergence rate at a point; naturally,
the corresponding constants are different.

3. PROOF OF THEOREM 1

It is well known that the Fourier transform is a very strong tool for the analysis of stationary
linear filters due to the fact that the functions exp(iλt) are eigenfunctions of these filters. In our
problem, the Fourier method cannot efficiently be used since the filter from (7) is not time-invariant
since the minimization problem is solved in L2(0,∞) but not in L2(−∞,∞). In this section, we
show how one can rather easily overcome this nuisance.

It is not difficult to write out Lagrange’s equations and check that the estimator from (7) is a
solution of the following boundary-value problem:

µ(−1)βD̂G
(2β)

x (x, µ) + D̂G(x, µ) = DGn(x), x ≥ 0,

D̂G
(l)

x (0, µ) = 0, l = β, . . . , 2β − 1.
(10)

Note that the solution of this problem can be written as follows:

D̂G(x, µ) =
∞∫

0

K(x, y, µ)DGn(y)dy, (11)

where K(x, y, µ) is the Green function of this boundary-value problem, i.e., the solution of the
equation

µ(−1)βK(2β)
x (x, y, µ) +K(x, y, µ) = δ(x− y), x ≥ 0, (12)
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28 GOLUBEV, ENIKEEVA

with boundary conditions
K(l)
x (0, y, µ) = 0, l = β, . . . , 2β − 1;

here, δ(·) is the Dirac δ-function.
The parameter µ can be eliminated by renorming. In fact, it can easily be checked that

K(x, y, µ) =
1

µ1/(2β)
K

(
x

µ1/(2β)
,

y

µ1/(2β)

)
,

where K(x, y) is a solution of the boundary-value problem

(−1)βK(2β)
x (x, y) +K(x, y) = δ(x− y), x ≥ 0,

K(l)
x (0, y) = 0, l = β, . . . , 2β − 1.

(13)

In principle, this problem can easily be solved. In particular, its solution for β = 1 is of the form

K(x, y) =

{
exp(−x) cosh(y), x > y,

exp(−y) cosh(x), 0 ≤ x ≤ y.
Note that K(x, y) also satisfies the equation

(−1)βK(2β)
y (x, y) +K(x, y) = δ(x− y), y ≥ 0,

K(l)
y (x, 0) = 0, l = β, . . . , 2β − 1.

(14)

This can easily be verified applying integration by parts in the equality (see (10))

f(x) =
∞∫
0

K(x, y)
[
(−1)βf (2β)(y) + f(y)

]
dy,

which is valid for any sufficiently smooth function f(x), x ≥ 0, with f (l)(0) = 0, l = β, . . . , 2β − 1.
Multiplying equation (14) by (x− y)l and using integration by parts, we observe that

∞∫
0

K(x, y)dy = 1,
∞∫
0

(x− y)lK(x, y)dy = 0, l = 1, . . . , β − 1. (15)

For x 6= y, equation (14) is a homogeneous differential equation with constant coefficients whose
general solution can easily be found (see, e.g., [9, p. 44]). Taking into account the boundary
conditions, it is not difficult to verify that the function K(x, y) satisfies the inequality

|K(x, y)| ≤ Ce−Cβ |x−y|, (16)

where Cβ > 0 is a constant.
Consider the following estimator of the function DG(x) at the origin:

D̂G(0, µ) =
1

µ1/(2β)

∞∫
0

K

(
0,

y

µ1/(2β)

)
DGn(y)dy

=
1√

πµ1/(2β)n

n∑
i=1

∞∫
0

K

(
0,

y

µ1/(2β)

)
1{Xi > y}√
Xi − y

dy

=
1

µ1/(2β)

∞∫
0

K

(
0,

y

µ1/(2β)

)
DG(y)dy

+
1
n

n∑
i=1

1
µ1/(2β)

∞∫
0

K

(
0,

y

µ1/(2β)

) [
1{Xi > y}√
π
√
Xi − y

−DG(y)
]
dy. (17)
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Let us estimate its bias. Equation (14) and the Cauchy–Bunyakovskii inequality yield∣∣∣ED̂G(0, µ) −DG(0)
∣∣∣ = µ−1/(2β)

∣∣∣∣∣∣
∞∫
0

K

(
0,

y

µ1/(2β)

)
[DG(y)−DG(0)]dy

∣∣∣∣∣∣
= µ1−1/(2β)

∣∣∣∣∣∣
∞∫
0

K(2β)
(

0,
y

µ1/(2β)

)
[DG(y)−DG(0)]dy

∣∣∣∣∣∣
= µ1/2−1/(2β)

∣∣∣∣∣∣
∞∫
0

K(β)
(

0,
y

µ1/(2β)

)
DG(β)(y)dy

∣∣∣∣∣∣
≤ µ1/2−1/(2β)


∞∫
0

[
K(β)

(
0,

y

µ1/(2β)

)]2

dy


1/2

∞∫
0

[
DG(β)(y)

]2
dy


1/2

= µ1/2−1/(4β)


∞∫
0

[K(β)(0, y)]2dy


1/2

∞∫
0

[
DG(β)(y)

]2
dy


1/2

. (18)

At the same time, the variance is estimated as (see (17))

Var D̂G(0, µ) ≤ 1
πnµ1/β

∞∫
0

g(x)

 x∫
0

K

(
0,

y

µ1/(2β)

)
1√
x− ydy

2

dx. (19)

To calculate this quantity, we use the following statement.

Lemma 1. For h→ 0, we have
x∫

0

K(z, y, h)√
x− y dy =

{
O
(
h−1/2

)
exp(−Cβ|z − x|/h), x < z + h,

(x− z)−1/2 +O[(x− z)−1/2−β ]hβ , x ≥ z + h.
(20)

The proof of this lemma can almost directly be derived from (15), (16), and the Taylor formula.
In fact, it follows from (16) that for x < z + h and h→ 0, we have

x∫
0

K(z, y, h)√
x− y dy ≤ O

(
h−1/2) x/h∫

0

exp(−Cβ|(z − x)/h+ y|)
√
y

dy

≤ O
(
h−1/2) exp(−Cβ|z − x|/h)

∞∫
0

e−Cβy
√
y

dy

= O
(
h−1/2) exp(−Cβ|z − x|/h),

which proves the first estimate from (20).
To derive the second estimate, let us substitute the Taylor-series expansion of the function

(x−y)−1/2 for x ≥ z+h into the estimated integral. Using (15) and (16), it is not difficult to show
that for h→ 0 we have

x∫
0

K(z, y, h)√
x− y dy = (x− z)−1/2 +O

[
(x− z)−β−1/2]hβ x/h∫

0

K

(
z

h
, t

)(
t− z

h

)β
dt

≤ (x− z)−1/2 +O
[
(x− z)−β−1/2]hβ x/h∫

0

exp(−Cβ |z/h− t|)
(
t− z

h

)β
dt

= (x− z)−1/2 +O
[
(x− z)−β−1/2]hβ ,
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30 GOLUBEV, ENIKEEVA

which implies the second estimate. 4
Using (20), the variance of the estimator is calculated in a very simple way:

Var D̂G(0, µ) ≤ 1
πnµ1/β


µ1/(2β)∫

0

g(x)

 x∫
0

K

(
0,

y

µ1/(2β)

)
1√
x− ydy

2

dx

+
∞∫

µ1/(2β)

g(x)

 x∫
0

K

(
0,

y

µ1/(2β)

)
1√
x− ydy

2

dx


≤ O(n−1) +

1
πn

∞∫
µ1/(2β)

g(x)x−1dx+O

µ1/2

πn

∞∫
µ1/(2β)

g(x)x−1−2βdx


= −[1 + o(1)]g(0)n−1(2πβ)−1 log µ. (21)

Proceeding in just the same way, we obtain that for any integer p > 1

∞∫
0

g(x)

 1
µ1/(2β)

x∫
0

K

(
0,

y

µ1/(2β)

)
1√
x− ydy

2p

dx

=
µ1/(2β)∫

0

g(x)

 1
µ1/(2β)

x∫
0

K

(
0,

y

µ1/(2β)

)
1√
x− ydy

2p

dx

+
∞∫

µ1/(2β)

g(x)

 1
µ1/(2β)

x∫
0

K

(
0,

y

µ1/(2β)

)
1√
x− ydy

2p

dx ≤ O
[
µ(1−p)/(2β)

]
. (22)

Now, we can easily prove the following statement.

Lemma 2. Assume that µ � n−2β/(2β−1). Then for any integer p ≥ 1, the inequality

E
[
D̂G(0, µ) −DG(0)

]2p
≤ Cp

[
g(0) log n
nπ(2β − 1)

]p
(23)

holds uniformly in F ∈ Bε(F0).

Proof. Note that, given µ, the square of the estimator bias has order O(n−1) according to
(18), which is significantly less than the variance, the latter being of order O(n−1 log n) by (21).
Therefore, the assertion follows from (18), (21), (22), and the inequality for the mathematical
expectation of sums of independent random variables raised to the power 2p (see[10, p. 79]). 4

The mean-square risk of the estimator D̂G(y, µ) on [0,∞) is calculated in the following way.

Lemma 3. Assume that µ � n−1. Then, uniformly in F ∈ Bε(F0), we have

E
∥∥∥D̂G( · , µ)−DG(·)

∥∥∥2
≤ [1 + o(1)]

log n
2nπβ

.

Proof. Let us calculate the bias of the estimator D̂G(y, µ). Integrating by parts yields (see (18))

ED̂G(y, µ)−DG(y) = µ1/2−1/(2β)

∞∫
0

K(β)
x

(
y

µ1/(2β)
,

x

µ1/(2β)

)
DG(β)(x)dx.
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From this, using the obvious change of variables, we get

∥∥∥ED̂G( · , µ) −DG(·)
∥∥∥2
≤ µ

∥∥∥DG(β)
∥∥∥2

sup
‖u‖≤1

∞∫
0

 ∞∫
0

K(β)
x (y, x)u(x) dx

2

dy. (24)

Then we obtain

sup
‖u‖≤1

∞∫
0

 ∞∫
0

K(β)
x (y, x)u(x) dx

2

dy ≤ sup
‖u‖≤1

inf
g

{
‖g − u‖2 + ‖g(β)‖2

}
≤ 1.

Therefore, from this and (24), we derive the inequality

∥∥∥ED̂G( · , µ) −DG(·)
∥∥∥2
≤ µ

∥∥∥DG(β)
∥∥∥2
. (25)

Now, applying Lemma 1, calculate the variance of the estimator. Setting for brevity h = µ1/(2β),
we have

E
[
ED̂G(y, µ)− D̂G(y, µ)

]2
≤ 1
πn

∞∫
0

g(x)

 x∫
0

K(y, z, h)√
x− z dz

2

dx

=
1
πn

 y+h∫
0

+
∞∫

y+h

 g(x)

 x∫
0

K(y, z, h)√
x− z dz

2

dx

≤ C

hn

y+h∫
0

g(x)e−2Cβ |x−y|/hdx+
1
πn

∞∫
y+h

g(x)
[
(x− y)−1/2 + hβ(x− y)−1/2−β

]2
dx

≤ 1
πn

∞∫
y+h

g(x)
x− ydx+

Chβ

πn

∞∫
y+h

g(x)
(x− y)1+β

dx+
C

hn

y+h∫
0

g(x)e−2Cβ |x−y|/hdx.

Integrating this inequality with respect to y and using inequality (25), we complete the proof of
Lemma 3. 4

We still need a simple but important fact proved similarly to previous lemmas.

Lemma 4. Assume that µ1 � n−1 and µ2 � n−2β/(2β−1). Then, uniformly in F ∈ Bε(F0), we
have

E
∞∫
0

DG(y)
[
D̂G(y, µ1)−DG(y)

][
D̂G(0, µ2)−DG(0)

]
dy = O(n−1).

Proof. From (18), (25), and the Cauchy–Bunyakovskii inequality, one directly obtains

∞∫
0

DG(y)
[
E D̂G(y, µ1)−DG(y)

][
E D̂G(0, µ2)−DG(0)

]
dy = O(n−1). (26)
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On the other hand, denoting for brevity h1 = µ
1/(2β)
1 and h2 = µ

1/(2β)
2 , we have

∞∫
0

DG(y)
[
E D̂G(y, µ1)− D̂G(y)

][
E D̂G(0, µ2)− D̂G(0)

]
dy

=
1
n

∞∫
0

DG(y)
∞∫
0

g(x)
x∫

0

x∫
0

K(y, z, h1)K(0, t, h2)√
x− z

√
x− t

dz dt dx dy

+
1
n

∞∫
0

DG(y)
x∫

0

x∫
0

K(y, z, h1)K(0, t, h2)DG(t)DG(z) dz dt dy. (27)

Then, applying Lemma 1, we obtain

∞∫
0

g(x)
K(y, z, h1)K(0, t, h2)√

x− z
√
x− t

dz dt dx

=

 h2∫
0

+
y+h1∫
h2

+
∞∫

y+h1

 g(x)
x∫

0

x∫
0

K(y, z, h1)K(0, t, h2)√
x− z

√
x− t

dz dt dx

≤
∞∫

y+h1

g(x)

(
1√
x

+
hβ2

x1/2+β

)(
1√
x− y +

hβ1
(x− y)1/2+β

)
dx

+
C√
h1

∞∫
h2

g(x)e−Cβ |y−x|/h1

(
1√
x

+
hβ2

x1/2+β

)
dx+ Cg(0)h1/2

2 h
−1/2
1 e−Cβy/h1 .

Multiplying this inequality by DG(y) and integrating with respect to y over [0,∞), we obtain
that the first term on the right-hand side of (27) has order O(n−1). The second term is obviously
bounded by the same quantity. 4

Proof of Theorem 1. Denote by A the following subset in Rn:

A =
{
Xn :

∣∣∣D̂G(0, µ2)−DG(0)
∣∣∣ ≤ DG(0)/ log n

}
.

By Lemma 2, the probability of the event that the observations belong to A is close to unity. More
precisely, applying the Chebyshev inequality and using (23), for any p > 1 we have

P
{
Xn /∈ A

}
≤ C(p)

(
log2 n

n

)p
. (28)

Represent the risk of the estimator F̂µ1,µ2(y,Xn) as follows:

R
(
F̂µ1,µ2 , F

)
= E

∥∥∥F̂µ1,µ2 − F
∥∥∥2

1{A}+ E
∥∥∥F̂µ1,µ2 − F

∥∥∥2
1{Ac}, (29)

where Ac is the complement of A. Since F is a distribution function, we have

E
∥∥∥F̂µ1,µ2 − F

∥∥∥2
1{A} ≤ E

∥∥∥∥∥F − 1 +
nD̂G( · , µ1)

n|D̂G(0, µ2)|+ 1

∥∥∥∥∥
2

1{A}. (30)

PROBLEMS OF INFORMATION TRANSMISSION Vol. 37 No. 1 2001



ASYMPTOTICALLY EFFICIENT SMOOTHING IN THE WICKSELL PROBLEM 33

To continue this inequality, let us apply the Taylor formula under the condition that Xn ∈ A. Then

1− nD̂G( · , µ1)

n|D̂G(0, µ2)|+ 1
= 1− DG(y)

DG(0)
− D̂G(y, µ1)−DG(y)

DG(0)

+ (1 + o(1))
DG(y)
DG(0)

D̂G(0, µ2)−DG(0) + n−1

DG(0)
.

From here, taking into account (30) and Lemmas 2, 3, and 4, we obtain

E
∥∥∥F̂µ1,µ2 − F

∥∥∥2
1{A} ≤ (1 + o(1)) log n

πDG2(0)n

(
1

2β
+
g(0)‖1 − F‖2

2β − 1

)
. (31)

Since the probability P
{
Xn /∈ A

}
is very small, one can calculate the second term in (29) using

rough inequalities. Note that, under the condition y > max
i=1,...,n

Xi, for the estimator D̂G(y, µ1) we

have the following relation (see (20)):

D̂G(y, µ1) ≤ Cµ−1/(2β)
1 exp

[
−Cβµ−1/(2β)

1

(
y − max

i=1,...,n
Xi

)]
.

Hence,

F̂µ1,µ2(y,Xn) ≥ 1−Cnµ−1/(2β)
1 exp

[
−Cβµ−1/(2β)

1

(
y − max

i=1,...,n
Xi

)]
and, therefore, for any distribution function F , the inequality∥∥∥F − F̂µ1,µ2

∥∥∥2
≤ 2‖1 − F‖2 + 2

∥∥∥1− F̂µ1,µ2

∥∥∥2

≤ 2‖1 − F‖2 + 2 max
i=1,...,n

Xi + 2
∞∫

max
i=1,...,n

Xi

[
1− F̂µ1,µ2(y,Xn)

]2
dy

≤ 2 max
i=1,...,n

Xi + 2‖1 − F‖2 + Cn2µ
−1/(2β)
1 (32)

is valid.
Note further that according to (6) and (4), we have

EX1+ε
i ≤ C

∞∫
0

y∫
0

x1+ε

√
y − xdx dF (y) ≤

∞∫
0

y3/2+εdF (y) ≤ C.

Thus, E max
i=1,...,n

X1+ε
i < Cn. Therefore, choosing p = p(ε) sufficiently large and using the Hölder

inequality, we obtain

E
∥∥∥F̂µ1,µ2 − F

∥∥∥2
1{Ac} ≤ O(n−1). (33)

Finally, taking into account (5), we have

DG(0) =
√
π

2

 ∞∫
0

√
y dF (y)

−1

,

and, therefore, relations (29), (31), and (33) imply the required inequality, (9). 4
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4. LOWER BOUND

To prove Theorem 2, it remains to check the inequality

r(F0) ≥ σ2(F0). (34)

We prove this inequality by applying the technique proposed in [6, 11] and based on the van Trees
inequality [12]. As was already mentioned, the problem of reconstruction of the distribution function
can conditionally be divided into two subproblems: estimation of the derivative of order 1/2 at the
origin and estimation of the same derivative on the whole interval [0,∞). Therefore, we will prove
the lower bound (34) according to this division. First of all, consider the contribution to the
minimax risk made by the estimation of DG(0). To do this, we apply the standard technique [13]
by constructing a univariate parametric family.

Let Q(x) ≥ 0 be a function with support on [−1/2, 1/2] such that

∞∫
−∞

Q(x)dx = 1, sup
x∈(−∞,∞)

|Q(β−1)(x)| <∞.

As such a function, we can choose, for example, the function

Q(x) =

{
C(β)(1/2 − x)β−1(x+ 1/2)β−1, |x| ≤ 1/2
0, |x| > 1/2,

where C(β) is the normalizing factor.
Define the function

ψh(x) =
1
h

δ∫
h

1
y
Q

(
y − x
h

)
dy,

where h < δ. Further we assume that δ is rather small and does not depend on the sample size n.
Properties of this function used below are collected in the following lemma.

Lemma 5. For h→ 0, we have

sup
x
ψh(x) ≤ O(h−1), (35)

y∫
0

ψh(x)dx = −(1 + o(1)) log h, y > δ + h, (36)

∞∫
0

√
xψh(x)dx = O(1), (37)

‖ψ(β−1)
h (x)‖ ≤ O(h−β+1/2). (38)

The proof is based on elementary calculations and the following formula for the lth derivative
of ψh(x):

ψ
(l)
h (x) =

{
O(h−l−1), x ≤ h,
l!x−l−1 +O(h)x−l−2, x > h,

and therefore is omitted.
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Define the family of distribution functions depending on an unknown parameter θ ∈ [0, 1] in the
following way:

Fnθ (x) =

F0(x) + θn−1/2

x∫
0

ψh(y)dy

/1 + θn−1/2

∞∫
0

ψh(y)dy

 ,
where F0(x) is a distribution function. Lemma 5 directly implies the statement below.

Lemma 6. Assume that ‖F0‖β <∞ and

h =
(

log n
n

)1/(2β−1)

. (39)

Then ‖Fnθ − F0‖β < ε/2 for all sufficiently large n.

Let us observe another simple fact easily obtained by means of (36) and the Taylor formula: for
x > δ + h, we have the equality

Fnθ (x) = F0(x) +
[
1 +O(n−1/2 log h)

]
[1− F0(x)]

θ√
n

∞∫
0

ψh(y)dy. (40)

In particular, this fact implies the following lower bound for estimation of the distribution
function Fnθ (x):

n inf
F̂

sup
θ

Eθ

∞∫
h+δ

∣∣∣F̂ (x)− Fnθ (x)
∣∣∣2 dx
≥ (1 + o(1)) log2 h inf

θ̂

sup
θ

Eθ (θ̂ − θ)2

∞∫
h+δ

[1− F0(x)]2dx; (41)

here, Eθ is averaging over the measure generated by n independent random variables with the
density (see (4))

gθ(x) =
1
2

∞∫
x

dFnθ (y)√
y − x

/ ∞∫
0

√
y dFnθ (y). (42)

Therefore, to continue inequality (41), it remains to compute the Fisher information

In(θ) =
∞∫
0

[g′θ(x)]2

gθ(x)
dx.

In this formula and below, g′θ(x) denotes the derivative with respect to θ. Actually, the only
nontrivial point in the computation of this quantity is calculation of the derivative of order −1/2
for the function ψh(x). This derivative is computed in the following lemma.

Lemma 7. For h→ 0, we have the following relations:

∞∫
x

ψh(y)√
y − xdy =


0, x > δ,

πx−1/2 +O
(
δ−1/2

)
, h ≤ x ≤ δ,

O
(
h−1/2

)
, 0 ≤ x ≤ h.
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The proof of this result becomes obvious if one uses the formula

∞∫
u

1
t
√
t− u

dt = π1{u ≥ 0}u−1/2. 4

It is not difficult to estimate the Fisher information In(θ) applying Lemmas 5 and 6.

Lemma 8. Assume that ‖F0‖β <∞ and h is defined in (39). Then, for n→∞, we have

In(θ) ≤ (1 + ρ(δ))π2g−1
0 (0)

2
∞∫
0

√
y dF0(y)

−2

n−1 log h−1,

where ρ(δ)→ 0 as δ → 0.

Proof. Using (42), the Taylor formula, and Lemmas 5 and 7, it is not difficult to verify that
for n→∞ we have

gθ(x) =
1 + o(1)

2

∞∫
x

dF0(y)√
y − x

/ ∞∫
0

√
y dF0(y). (43)

Similarly, we get

√
ng′θ(x) =

1 + o(1)
2

∞∫
x

ψh(y)√
y − xdy

/ ∞∫
0

√
y dF0(y)

− 1 + o(1)
2

∞∫
x

dF0(y)√
y − x

 ∞∫
0

√
y dF0(y)

−2 ∞∫
0

√
yψh(y)dy. (44)

The contribution of the second term on the right-hand side of (44) to the Fisher information is of
order O(n−1) since DF0 ∈ L2(0,∞) and the latter integral is bounded (see (37)).

To calculate the main component of the Fisher information, it suffices to note that Dψh(x) does
not vanish in a δ-neighborhood of the origin only and DF0(x) is continuous at the origin. More
precisely, |DF0(x)−DF0(0)| < C

√
xmax

y
F ′0(y). Therefore, noting that, by Lemma 7,

∞∫
0

 ∞∫
x

ψh(y)√
y − xdy

2

dx = (1 + o(1))π2 log h−1,

and taking into account (43) and (44), we obtain the required inequality. 4
Now, we can continue lower bound (41) using the van Trees inequality (see [12, p. 83]). Assume

that the parameter θ is a random variable with probability density π(x), x ∈ [0, 1]. Moreover, we
also assume that the Fisher information

I =
1∫

0

π′2(x)
π(x)

dx

is finite. Then
inf
θ̂

sup
θ∈[0,1]

Eθ (θ̂ − θ)2 ≥ inf
θ̂

E Eθ (θ̂ − θ)2 ≥ (nIn(θ) + I)−1.
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Then, since δ is arbitrary, we obtain by Lemma 8 and (41) that

n inf
F̂

sup
θ

Eθ

∞∫
0

∣∣∣F̂ (x)− Fnθ (x)
∣∣∣2 dx
≥ (1 + o(1))

4
π2(2β − 1)

 ∞∫
0

√
y dF0(y)

2

‖1− F0‖2 log n. (45)

A significant contribution to the lower bound is also made by estimation of the function DG(y)
for y ∈ [0,∞). We take this fact into account by means of introducing a new parametric family.
Put

ϕT2k(x) =
√

2
T

cos
(

2πkx
T

)
, ϕT2k+1(x) =

√
2
T

sin
(

2πkx
T

)
and define the normalized trigonometric polynomial Pν(x,W ) of order W in the following way:

Pν(x,W ) =
1√
n

W∑
k=logW

akνkϕ
T
k (x),

where ak = (2πbk/2c/T )1/2 ; here, byc denotes the integral part of y and the quantity T ≥ 1 does
not depend on n. Along with asymptotics as n→∞, we are interested in the case where T is large.
Denote for brevity

χT (x) =
1
δ

T+5/2δ∫
−∞

Q

(
x− y
δ

)
dy.

This function is a smooth approximation of 1{t ≤ T + 5/2δ}.
Below, we consider the following parametric family of distribution functions depending on un-

known parameters θ and νk, k ∈ [logW,W ]:

Fnθ,ν(x) =
Fnθ (x) +

x∫
0
χT (u)Pν(u,W )du+ δ2β

x∫
0
χT+δ(u)du

1 +
∞∫
0
χT (u)Pν(u,W )du+ δ2β

∞∫
0
χT+δ(u)du

.

Lemma 9. Assume that ν2
k ≤ log n and W = (n/ log2 n)1/(2β). Then ‖Fnθ,ν − F0‖β ≤ ε for all

sufficiently large n and sufficiently small δ.

Proof. First of all, let us check that Fnθ,ν(x) is a distribution function. To this end, it suffices
to show that

inf
x≥0

[
χT (x)Pν(x,W ) + δ2βχT+δ(x)

]
≥ 0.

Since χT (x) = 0 for x ≥ T + 3δ and χT+δ(x) = 1 for x ≤ T + 3δ, it suffices to verify that
sup
x≥0
|Pν(x,W )|δ−2β < 1. This inequality is fulfilled for sufficiently large n, since for β ≥ 2 we have

sup
x≥0
|Pν(x,W )| ≤

(
log n
n

)1/2

W 3/2 ≤ n−1/8 log1/2 n.

Therefore, it remains to check that the functions Fnθ,ν(x) are smooth. Indeed, for any m ≤ β−1,
we have

2T∫
0

[P (m)
ν (x,W )]2dx =

2
n

W∑
k=logW

ν2
ka

2m+1
k ≤ O

(
W 2m+2 log n

n

)
.
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Then, observing that ‖χ(2m)
T+δ ‖ = ‖χ(2m)

T ‖ ≤ Cδ1−2m for all 0 < m ≤ β − 1, we obtain

∞∫
0

[
dβ−1

dxβ−1
Pν(x,W )χT (x)

]2

dx ≤ Cδ2β−2W 2n−1 log n+ CTW 2βn−1 log n ≤ O(log−1 n),

which obviously completes the proof of the lemma. 4
For subsequent calculations, we shall use the Taylor formula for the parametric family Fnθ,ν(x).

Denote for brevity

F δ,T0 (x) =

F0(x) + δ2β

x∫
0

χT+1(u)du

/1 + δ2β

∞∫
0

χT+1(u)du

 .
Omitting elementary computations, for x > δ + h we arrive at the following formula:

Fnθ,ν(x) = F δ,T0 (x) + (1 +O(δ))(1 − F0(x))
θ√
n

∞∫
0

ψh(u)du

+ (1 +O(δ)

 x∫
0

χT (u)Pν(u,W )du− F δ,T0 (x)
∞∫
0

χT (u)Pν(u,W )du

 . (46)

Lemma 10. Under the conditions of Lemma 9, we have

n inf
F̂

sup
θ,ν

Eθ,ν

∞∫
0

∣∣∣F̂ (x)− Fnθ,ν(x)
∣∣∣2 dx

≥ (1 +O(δ))‖1 − F0‖2 log2 h inf
θ̂

sup
θ,ν

Eθ,ν|θ̂ − θ|2

+ (1 +O(δ)) inf
ν̂k

sup
θ,ν

Eθ,ν

W∑
k=logW

(ν̂k − νk)2a−2
k +O(1). (47)

Proof. Taking into account that χT (x) = 1 for x ∈ [2δ, T + 2δ], let us use the trivial inequality

∞∫
0

∣∣∣F̂ (x)− Fnθ,ν(x)
∣∣∣2 dx ≥ T+2δ∫

2δ

∣∣∣F̂ (x)− Fnθ,ν(x)
∣∣∣2 dx.

Then, substituting (46) into the inequality above and estimating the interference terms by means
of integrating by parts, we arrive at the required inequality. 4

Proof of Theorem 2. A lower bound for the first term on the right-side of (47) is already
obtained in (45). To estimate the second term, put W = (n/ log2 n)1/(2β) (see Lemma 9), divide
the index set {logW, . . . ,W} into blocks Bs of length log logW , and lower bound the risk over the
block Bs

ρs = inf
ν̂k

sup
θ,ν

Eθ,ν

∑
k∈Bs

(ν̂k − νk)2.

Moreover, the parameter θ is assumed to be known. Then, assuming that the quantities νk are
independent random variables whose Fisher information has order log−1 n, apply the van Trees

PROBLEMS OF INFORMATION TRANSMISSION Vol. 37 No. 1 2001



ASYMPTOTICALLY EFFICIENT SMOOTHING IN THE WICKSELL PROBLEM 39

inequality [12]. Note that, by (4), for n→∞ we have

√
n
∂gθ,ν(x)
∂νk

=
1
2
∂

∂νk

∞∫
x

dFnθ,ν(y)
√
x− y dy

/ ∞∫
0

√
y dFnθ,ν(y)

= (1 + o(1))
ak
2

∞∫
x

χT (y)ϕTk (y)√
y − x dy

/ ∞∫
0

√
y dF δ,T0 (y)

− (1 + o(1))
ak
2

∞∫
x

dF δ,T0 (y)√
x− y dy

 ∞∫
0

√
y dF δ,T0 (y)

−2 ∞∫
0

√
yχT (y)ϕTk (y)dy. (48)

Thus, we arrive at the inequality

ρs ≥ tr (I + log−1 nE)−1; (49)

here, E is the identity matrix and I is the mean value of the Fisher information matrix

Ikj = E
T+3δ∫
0

g−1
θ,ν(x)

∂gθ,ν(x)
∂νk

∂gθ,ν(x)
∂νj

dx.

Denote for brevity

sk(x) = ak

T+3δ∫
x

ϕTk (y)χT (y)√
y − x dy.

To compute these functions, let us use the identity

∞∫
x

exp(iλt)√
t− x

dt = (π/λ)1/2ei(λx−π/4),

or, equivalently,
∞∫
x

ϕTk (x)√
t− x

dt =
√
πa−1

k ϕTk

(
x− T

4k

)
.

Therefore, integrating by parts, we obtain, for x ≤ T , that

sk(x) =
√
πϕTk

(
x− T

4k

)
+ ak

∞∫
x

ϕTk (y)[1− χT (y)]√
y − x dx

=
√
πϕTk

(
x− T

4k

)
+ εk(x), (50)

where

εk(x) =
√

2
T
O

(
1√

T + 3δ − x

)
a−1
k .

Note also that |εk(x)| ≤ T−1/2 for x ∈ [T, T + 3δ]. From this, we immediately get

lim
n→∞

∑
s∈Bs

∞∫
0

ε2
k(x)

gθ,ν(x)
dx = 0.
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Then, again integrating by parts, we note that the relation

∞∫
0

√
yχT (y)ϕTk (y)dy = O(a−2

k )

holds. Therefore, taking into account two latter relations, formula (48), and Lemma 12 (see Ap-
pendix), we obtain

tr(I + log−1 nE)−1 = (1 + o(1))4π−1

 ∞∫
0

√
y dF δ,T0 (y)

2

tr J−1, (51)

where

Jjk = E
T+3δ∫
0

g−1
θ,ν(x)ϕTk

(
x− T

4k

)
ϕTj

(
x− T

4j

)
dx

= ET

1+3δ/T∫
0

g−1
θ,ν(xT )ϕTk

(
xT − T

4k

)
ϕTj

(
xT − T

4j

)
dx.

To lower bound the quantity tr J−1, let us use inequality (60) (see Appendix). We have

tr J−1 ≥ (1 + o(1)) log logW
1∫

3δ/T

[
E g−1

θ,ν(xT )
]−1

dx

≥ (1 + o(1))T−1 log logW
T∫

3δ

g0(x)dx. (52)

Hence, from (49), (51), and (52), we derive

inf
ν̂k

sup
θ,ν

Eθ,ν

W∑
k=logW

(ν̂k − νk)2a−2
k

≥
W/ logW∑
s=1

a−2
logW+s log logW inf

ν̂k

sup
θ,ν

Eθ,ν

∑
k∈Bs

(ν̂k − νk)2

≥ (1 + o(1))
4
π2

T∫
3δ

g0(x)dx

 ∞∫
0

√
y dF δ,T0 (y)

2 W/ logW∑
s=1

log logW
logW + s log logW

≥ (1 + o(1))
4
π2

T∫
3δ

g0(x)dx

 ∞∫
0

√
y dF δ,T0 (y)

2

logW.

Noting that, for δ → 0 and T →∞, we have

T∫
3δ

g0(x)dx→ 1 and
∞∫

0

√
y dF δ,T0 (y)→

∞∫
0

√
y dF0(y),

we complete the proof of the theorem. 4
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APPENDIX

Here, some simple results about traces of the Fisher information inverse matrices of a special
form are given. In principle, these results could be obtained by the standard moment method [14]
but, using a statistical interpretation of the problem, we derive them by means of rather simple
reasoning.

Denote for brevity

ϕ2k(t) =
√

2 cos[2π(k +M)t + αk], ϕ2k+1(t) =
√

2 sin[2π(k +M)t+ αk].

Let A be an m×m matrix with entries

Aij =
1∫

0

ϕi(t)ϕj(t)
g2(t)

dt;

here, g(t) is a function such that
1∫
0
g−2(t)dt < ∞ and M is an integer. We are interested in the

behavior of trA−1 for large m.

Lemma 11. We have
1
m

trA−1 ≤
1∫

0

g2(t)dt (53)

and, if p(t) is a trigonometric polynomial of order Q such that p2(t) ≤ g2(t), then

1
m

trA−1 ≥
(

1− 8Q+ 4
m

) 1∫
0

p2(t)dt. (54)

Proof. Let us use a statistical interpretation of the matrix A−1. Assume that it is required to
estimate a vector (θ1, . . . , θm)T from the observations

y(t) =
m∑
k=1

θkϕk(t) + g(t)n(t), t ∈ [0, 1],

where n(t) is a standard white Gaussian noise. It is well known that, in the problem considered,
the matrix A is a Fisher information matrix and therefore (see e.g., [13, pp. 112–114]) we have

inf
θ̂k

sup
θk

E
m∑
k=1

(θ̂k − θk)2 = trA−1, (55)

where E is averaging with respect to the measure generated by the observations y(t) and the
infimum is taken over all estimators.

To prove inequality (53), consider the estimator

θ̂k =
1∫

0

ϕk(t)y(t)dt = θk +
1∫

0

ϕk(t)g(t)n(t)dt.

Clearly,

E(θ̂k − θk)2 =
1∫

0

g2(t)ϕ2
k(t)dt.
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Therefore, using the equality ϕ2
2s+1(t) + ϕ2

2s(t) = 2 and formula (55), we obtain (53).
The proof of inequality (54) is more complicated. Consider new observations

ỹ(t) =
m∑
k=1

θkϕk(t) + p(t)ñ(t), t ∈ [0, 1], (56)

where p(t) is a trigonometric polynomial of order Q such that p2(t) ≤ g2(t) and ñ(t) is a white
Gaussian noise independent of n(t). Then the observations y(t) can be represented as y(t) =
ỹ(t) +

√
g2(t)− p2(t)n0(t), where n0(t) is a white Gaussian noise independent of ñ(t). It is obvious

that adding an additional noise to observations can only enlarge the minimax risk; in other words,
it is true that

inf
θ̂k

sup
θk

E
m∑
k=1

(θ̂k − θk)2 ≥ inf
θ̂k

sup
θk

Ẽ
m∑
k=1

(θ̂k − θk)2, (57)

where Ẽ is averaging with respect to the measure generated by the observations ỹ(t). To continue
this inequality, multiply observations (56) by the functions ϕk and then integrate over the interval
[0, 1]. Then we arrive at the following model of observations:

ỹk = θ̃k + ξk, θ̃k = θ2k + iθ2k+1, ξk =
√

2
1∫

0

exp[i(2πikt + αk)]p2(x)ñ(t)dt,

where index k takes all values beginning with −M and the quantities θ̃k do not vanish for k ∈
[1,m/2] only. Then, note that p2(t) is a trigonometric polynomial of order 2Q, which means
independence of the Gaussian random variables ξk and ξs for |k − s| > 2Q.

Since there are no any restrictions on θ̃k, we can put

θ̃k = A
√

2
1∫

0

exp[i(2πkt + αk)]p2(t)n1(t)dt,

where A is an arbitrary number and n1(t) is a white Gaussian noise independent of ñ(t). Since

the quantities θ̃k are now Gaussian random variables, the optimal estimator is linear, ̂̃θk =
∑
s
hsỹs,

where hs is a solution of the equation

E

(
θ̃k −

∑
s

hsỹs

)
ỹl = 0.

From this, it is not difficult to obtain that, for k ∈ [2Q+ 1,m− 2Q− 1], the estimator ̂̃θk is of the

form ̂̃
θk = A/(A + 1)ỹk and its risk is equal to Ẽ|̂̃θk − θ̃k|2 = 2A/(A + 1). Therefore,

inf
θ̂k

sup
θk

Ẽ
m∑
k=1

(θ̂k − θk)2 ≥
m/2−2Q−1∑
k=2Q+1

Ẽ
∣∣∣∣̂̃θk − θ̃k∣∣∣∣2 ≥ (m− 8Q− 4)A/(A + 1)

since the minimax risk is lower bounded by the Bayesian risk. Since the quantity A is arbitrary,
the above inequality and (57) imply (54). 4

From Lemma 11, it is not difficult to obtain some useful facts about the behavior of trA−1/m
as m→∞. For example, if g2(t) is strictly bounded away from zero and is continuous everywhere
except for a finite number of points, then we have

lim
m→∞

1
m

trA−1 =
1∫

0

g2(t)dt. (58)
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This fact easily follows from the second Weierstrass theorem [15, p. 26] and the fact that the space
of continuous functions on [0, 1] is dense in L2[0, 1].

Consider another simple example. Put

Bij =
2∫

0

ϕi(t)ϕj(t)
g2(t)

dt;

i.e., B is the Fisher information matrix in the problem of estimating the parameters θ1, . . . , θm
from the observations

y(t) =
m∑
k=1

θkϕk(t) + g(t)n(t), t ∈ [0, 2].

Since
m∑
k=1

θkϕk(t) is a periodic function of period 1, the observations y(t) are equivalent to the

following ones:

ȳ(t) =
m∑
k=1

θkϕk(t) + ḡ(t)n(t), t ∈ [0, 1], where ḡ(x) =
g(t)g(t + 1)√
g2(t) + g2(t+ 1)

.

Therefore, traces of the Fisher information matrices in the problem of estimation from the obser-
vations y(t), t ∈ [0, 2], and ȳ(t), t ∈ [0, 1], coincide. If the function g2(t) is bounded away from
zero on the segment [0, 2] and is continuous everywhere except for a finite number of points, then
Lemma 11 implies

lim
m→∞

1
m

trB−1 =
1∫

0

ḡ2(t)dt. (59)

Observe one more simple inequality. Define a matrix C by the equalities

Cij =
1+ρ∫
0

ϕi(t)ϕj(t)
g2(t)

dt,

where ρ ∈ (0, 1). If the function g2(t) is strictly bounded away from zero on the segment [0, 1 + ρ]
and is continuous everywhere except for a finite number of points, then we have

lim
m→∞

1
m

trC−1 ≥
1∫
ρ

g2(t)dt. (60)

In certain statistical problems, the Fisher information matrix can slightly differ from the ideal
matrix A. To compute the trace of the inverse matrix in this case, consider the “perturbed” m×m
matrix

Aεij =
1∫

0

[ϕi(t) + εi(t)][ϕj(t) + εj(t)]
g2(t)

dt,

where the quantities εi(t) are some functions from a Hilbert space Lg2(0, 1) with the norm

‖f‖2g =
1∫

0

f2(t)
g2(t)

dt.

The following lemma estimates the trace of the matrix [Aε]−1 by that of A−1.
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Lemma 12. We have

∣∣∣ tr[Aε]−1 − trA−1
∣∣∣ ≤ 4m

(
m∑
k=1

‖εk‖2g

)1/2

.

Proof. Denote by Pϕ, Pϕ+ε, and Pϕ,ε the subspaces spanned by the functions {ϕ1, . . . , ϕm},
{ϕ1 + ε1, . . . , ϕm + εm}, and {ϕ1, ε1, . . . , ϕm, εm} respectively. Denote also by Πϕ, Πϕ+ε, and Πϕ,ε

the projection operators onto these spaces respectively.
Let ng(t) = n(t)g(t) be a white Gaussian noise in Lg2(0, 1). Then, as is well known,

trA−1 = E‖Πϕn
g‖2g = E‖ΠϕΠϕ,εn

g‖2g,
tr[Aε]−1 = E‖Πϕ+εn

g‖2g = E‖Πϕ+εΠϕ,εn
g‖2g.

(61)

Note that for any elements x, y, z ∈ Lg2(0, 1) we have

‖x− y‖g − ‖x− z‖g ≤ ‖y − z‖g.

Therefore, putting

d = inf
‖y‖g≤1
y∈Pϕ

sup
‖z‖g≤1
z∈Pϕ+ε

‖y − z‖g,

we obtain that for any x such that ‖x‖g = 1, we have the following inequality:

inf
‖y‖g≤1
y∈Pϕ

sup
‖z‖g≤1
z∈Pϕ+ε

{
‖x− y‖g − ‖x− z‖g

}
=
(
1− ‖Πϕx‖2g

)1/2
−
(
1− ‖Πϕ+εx‖2g

)1/2
≤ d.

Hence, for any x ∈ Lg2(0, 1), we have

‖Πϕ+εx‖2g − ‖Πϕx‖2g ≤ 2d‖x‖2 (62)

and, by symmetry,

‖Πϕx‖2g − ‖Πϕ+εx‖2g ≤ 2d‖x‖2. (63)

Note that the dimension of the subspace Pϕ,ε is less than 2m. Therefore E‖Πϕ,εn
g‖2g ≤ 2m and

hence, from (61)–(63) we derive

∣∣∣ tr[Aε]−1 − trA−1
∣∣∣ ≤ 4md.

To complete the proof of the lemma, it suffices to note that the distance d can be estimated as
follows:

d = sup
‖z‖g≤1
z∈Pϕ+ε

inf
‖y‖g≤1
y∈Pϕ

‖y − z‖g ≤ sup∑
v2
k
≤1

∥∥∥∥ m∑
k=1

vkεk

∥∥∥∥
g

≤
(

m∑
k=1

‖εk‖2g

)1/2

. 4

In conclusion, we would like to express our sincere gratitude to the reviewer for valuable remarks,
which helped us to improve this paper.
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