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Abstract—We consider the problem of estimating an infinite-dimensional vector θ observed in
Gaussian white noise. Under the condition that components of the vector have a Gaussian prior
distribution that depends on an unknown parameter β, we construct an adaptive estimator with
respect to β. The proposed method of estimation is based on the empirical Bayes approach.
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1. INTRODUCTION

We observe the vector X = (X1,X2, . . .) with components given by

Xi = θi + n−1/2ξi, i = 1, 2, . . . , (1)

where ξi are independent N (0, 1) random variables and n → ∞. Our goal is to estimate the
unknown infinite-dimensional vector θ = (θ1, θ2, . . .), θ ∈ ℓ2.

This model is a discrete version of the well-known white noise model. Indeed, consider observa-
tions of an unknown signal f ∈ L2(0, 1) in the white noise model,

dx(t) = f(t) dt+ ε dw(t), t ∈ [0, 1]. (2)

These observations can be regarded as the sequence of the Fourier coefficients of f with respect to
some orthonormal basis {ϕk}k∈N

in L2(0, 1). Thus, we obtain a discrete model

X̃i = θ̃i + εξ̃i, i ∈ N,

where w(t) is the standard Wiener process, ε > 0 is a small parameter, X̃i =
1∫
0
ϕi(t) dx(t), θ̃i =

1∫
0
ϕi(t)f(t) dt, and ξ̃i =

1∫
0
ϕi(t) dw(t) are i.i.d. N (0, 1) random variables. Thus, if we set ε = n−1/2,

then the problem of estimating an unknown signal from observations (1) is equivalent to the problem
of estimating a signal in the Gaussian white noise model (2) (see [1,2]). That is why, sometimes we
call the vector θ in model (1) a signal. The Gaussian white noise model (2) for ε = n−1/2 is a good
approximation for many problems of estimation theory, for example, for the problem of density
estimation [3] and the problem of estimating the function of nonparametric regression [4] from n
observations. In [3, 4] the equivalence of the corresponding models is proved.

There are two different approaches to signal estimation. The first approach assumes that the
signal is unknown and constant, and the second one assumes that the signal is a random process.
Depending on the approach, we need different prior information on the unknown signal. For the
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322 BELITSER, ENIKEEVA

first approach, it is usually assumed that the vector θ belongs to some given compact symmetric
subset Θ ⊂ ℓ2. In the classical case, this subset is an ellipsoid that belongs to ℓ2:

Θ = Θβ(Q) =

{
θ :

∞∑

i=1

i2βθ2
i ≤ Q

}
.

The parameter β > 0 has the meaning of the degree of smoothness of the signal, since the relation
θ ∈ Θβ(Q) imposes a condition on the smoothness of the signal f in the space of functions (it is

related to the Sobolev space of smoothness β). The quality of the estimate θ̂ = θ̂(X) for a fixed θ
is measured by the mean-square risk function R(θ̂, θ) = Eθ ‖θ̂ − θ‖2, where ‖ · ‖ is the norm in
the space ℓ2. The quality of the estimator θ̂ = θ̂(X) for the class Θ is characterized by the value
of the maximum mean-square risk R(θ̂,Θ) = sup

θ∈Θ
R(θ̂, θ). Then the optimal estimator in terms of

the minimax risk r(Θ) = inf
θ̂

sup
θ∈Θ

R(θ̂, θ) should be constructed. In [5], under the prior information

θ ∈ Θβ(Q), the minimax estimator is constructed and the exact asymptotic of the minimax risk is
obtained: lim

n→∞
n2β/(2β+1)r(Θβ(Q)) = γ(β,Q), where γ(β,Q) is the so-called Pinsker constant.

In the second approach, the signal is random, and the classical Bayesian approach is mostly
often applied. This approach requires the knowledge of the prior distribution of the signal θ ∼ π.
This problem is called the filtering problem for a signal (with realizations in ℓ2), and the quality
of estimation is characterized by the Bayesian risk Rπ(θ̂) = Eπ R(θ̂, θ), where the mean Eπ is with
respect to the prior measure π. It is well known that the optimal (Bayesian) estimate in terms of
the mean-square risk is the posterior mean θ̂ = E(θ |X).

Note that these two approaches are closely related. On one hand, the minimax estimate is
Bayesian with respect to the so-called less informative prior. On the other hand, Bayesian estimate
can be considered (with respect to the prior distribution π) as an optimal estimate of the nonran-
dom signal θ if the quality of estimation is measured by the Bayesian risk Rπ(θ̂). The author of [5]
combined these two approaches and showed, among many other results, that, asymptotically, we
can choose the distribution π = π(n, β,Q) as the less informative (asymptotically) prior, where θi

are independent random variables with zero means and specially chosen variances τ2
i = τ2

i (n, β,Q).
The knowledge of the parameter β is essential here, since the convergence rate of the risk of the
corresponding Bayesian estimator (which is the same as the minimax convergence rate) depends
on β: n−2β/(2β+1), whereas the parameter Q is only involved in the expression for the optimal con-
stant of the risk γ(β,Q). If we restrict ourselves with the convergence rate of the minimax risk over
the Sobolev ellipsoid Θβ(Q), then, as we show in the present paper, the prior distribution π = πβ

defined by relations (3) given below leads to a Bayesian estimator θ̂(β), which is also minimax with
respect to the convergence rate. One of the main features of this approach is its independence of n,
which is traditional for the Bayesian approach, though this is not a necessary requirement on the
prior distribution in the framework of the minimax approach (in the proof of lower bounds). Note
also that in the case of the trigonometric basis {ϕk}k∈N

, the corresponding signal f in the equiva-
lent Gaussian white noise model is a stationary Gaussian process, and its Bayesian estimate is the
well-known Wiener filter in the classical problem of filtering of the stationary Gaussian process with
Gaussian white noise. Thus, the parameter β that appears in the definition of the prior πβ can be
regarded as smoothness of the signal θ, and the distribution πβ itself describes the worst situation
from the minimax point of view since it is the least advantageous in terms of the convergence rate
of the minimax risk.

If the parameter β is unknown, then the problem of adaptive estimation of the signal θ arises.
The minimax setup of this problem was studied in [6–11]. The authors of those papers proposed
various methods to construct adaptive estimators of a nonrandom signal θ. Here we consider a
Bayesian version of the problem of adaptive signal estimation. We assume that the signal θ is
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random and is distributed according to the prior distribution (3) with an unknown smoothness
parameter β > 0. We also assume that realizations of the signal θ belong to ℓ2. Our goal is to
estimate the signal θ adaptively with respect to the parameter β, using the Bayesian ℓ2-risk Rπβ

(θ̂)

as a measure of estimation quality. It is clear that the Bayesian estimator θ̂(β) cannot be used,
since the smoothness parameter β is unknown. Below, we use the Bayesian estimator θ̂(β) (5) as
a benchmark, which is usually called an oracle. The main goal is to construct an optimal adaptive
estimator of the signal, that is, a measurable function of observations independent of β such that
its risk is asymptotically not worse than the risk of the oracle. Note that our results can also be
interpreted for the problem of estimating a nonrandom signal, namely, as if we were estimating
a nonrandom signal θ in the best way in terms of the Bayesian risk with a prior distribution πβ,
where the parameter β is unknown.

We use the empirical Bayes approach proposed in [12] to construct our estimator. We construct
the estimate of the parameter β based on observations X and use it instead of β in formula (5).
Note that in the minimax setup it is hard to interpret the pronlem of estimating the smoothness
of a signal, since it is unclear what the smoothness of the signal θ is, for example, if it is known
that θ ∈ Θβ(Q) (it is possible that at the same time θ ∈ Θβ′(Q′) for β′ > β and for another Q′).
From the Bayesian point of view, the problem of estimating the smoothness parameter β does make
sense; in this case β is an unknown parameter of the prior distribution πβ.

The problem of estimating the smoothness parameter β is an auxiliary problem, but it is in-
teresting on its own. This is a specific problem of parametric estimation with infinitely many
non-identically distributed observations and with a nontraditional asymptotic behavior (in our
case, the parameter n, n → ∞, is not the number of observations but some parameter involved
in the variance of observations). We use a version of the maximum likelihood method, where the
likelihood is the distribution of the observation X, which can be found by integrating the mutual
distribution (X, θ) with respect to the unobserved component θ.

The empirical Bayes approach to the problem of adaptive estimation of a functional in the model
of Gaussian white noise with prior distribution τ2

i (β) = e−βi of the parameter θ was considered
in [13]. This prior distribution corresponds to the class of analytic functions f , where the pa-
rameter β accounts for the “degree of analyticity” of a function. In [14] there was considered the
Bayesian approach to the adaptive estimation in the minimax setup for Sobolev classes; i.e., the
signal was assumed to be nonrandom and to belong to a Sobolev class of an unknown smoothness.

2. MAIN RESULTS

2.1. Statement of the Problem and Notation

Let us recall the statement of the problem. We have to estimate an unknown parameter θ =
(θ1, θ2, . . . ) from its observations in Gaussian white noise

Xi = θi + n−1/2ξi, i = 1, 2, . . . ,

where ξi ∼ N (0, 1), n → ∞. We assume that θ is a random variable such that its realizations θ
belong to ℓ2. The distribution π = πβ of the vector θ is such that β > 0, the components θi are
independent, and

θi ∼ N (0, τ2
i (β)), τ2

i (β) = i−(2β+1), i ∈ N. (3)

Let θ̂ be an estimator of the parameter θ, Eθ be the conditional mean of X given θ, Eπ be
the conditional mean with respect to the prior distribution π = πβ, and E be the mean with
respect to the joint distribution of (X, θ). Then we can define the Bayesian mean-square risk of
the estimator θ̂ as

Rπ(θ̂) = Eπ R(θ̂, θ) = Eπ Eθ ‖θ̂ − θ‖2 = E ‖θ̂ − θ‖2, (4)
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and the maximal risk of the estimator θ̂ over the Sobolev ellipsoid is given by

R(θ̂,Θβ(Q)) = sup
θ∈Θβ(Q)

R(θ̂, θ).

It is not difficult to obtain a Bayesian estimator θ̂(β) with respect to the prior distribution πβ.
From properties of the normal distribution, it follows that the posterior distribution πβ(θ |X) is
given by

θi |X ∼ N

(
τ2
i (β)Xi

τ2
i (β) + n−1

,
τ2
i (β)n

−1

τ2
i (β) + n−1

)

and Xi are (conditionally) independent. Thus, the Bayesian estimator θ̂(β) is given by

θ̂i(β) = E(θi |X) = E(θi |Xi) =
τ2
i (β)

τ2
i (β) + n−1

Xi, i ∈ N, (5)

where θ̂i(β) are components of the vector θ̂(β). Note that θ̂(β) is not an adaptive estimator, since
the parameter β is used in its construction.

The following two results prove that the prior distribution πβ in the Bayesian setup represents
the property θ ∈ Θβ(Q) in the minimax setup at least in the sense of convergence rate. Thus,
the parameter β of the prior distribution can be considered as a smoothness parameter in the
nonparametric class Θβ(Q). The first result shows that the Bayes estimator θ̂(β) is a minimax
estimator with respect to the convergence rate under the condition that θ belongs to the Sobolev
ellipsoid Θβ(Q).

For r ≥ 0, 0 < q < ∞, and pq > r + 1, define the function

B(p, q, r) =

∞∫

0

ur

(1 + up)q
du = p−1Beta

(
q −

r + 1

p
,
r + 1

p

)
, (6)

where Beta(α, β) =
1∫
0
uα−1(1− u)β−1du is the beta function.

Proposition 1. We have the inequality

lim sup
n→∞

n2β/(2β+1)R(θ̂(β),Θβ(Q)) ≤
(
QC(β) +B(2β + 1, 2, 0)

)
,

where C(β) =
(1 + β−1)2(β+1)/(2β+1)

(2 + β−1)2
and the function B is defined by (6).

Proof. We have

Eθ ‖θ − θ̂‖2 = Eθ

∞∑

i=1

(
τ2
i (β)Xi

τ2
i (β) + n−1

− θi

)2

=
∞∑

i=1

n−2θ2
i

(τ2
i (β) + n−1)2

+
∞∑

i=1

n−1τ4
i (β)

(τ2
i (β) + n−1)2

.

Thus, as n → ∞,
∞∑

i=1

n−2θ2
i

(τ2
i (β) + n−1)2

=
∞∑

i=1

i2(2β+1)θ2
i

(n+ i2β+1)2
≤ Qmax

i∈N

i2β+2

(
n+ i2β+1

)2

= QC(β)n−2β/(2β+1)(1 + o(1)),
∞∑

i=1

n−1τ4
i (β)

(τ2
i (β) + n−1)2

=
∞∑

i=1

n
(
n+ i2β+1

)2

= n−2β/(2β+1)B(2β + 1, 2, 0)(1 + o(1)). △
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In the next lemma the asymptotic Bayesian mean-square risk is obtained for the Bayesian
estimator (5). The convergence rate of this estimator is equal to the minimax convergence rate.

Proposition 2. Let the estimate θ̂ be defined by (5). Then

lim
n→∞

n2β/(2β+1)Rπ(θ̂) =
π

(2β + 1)2 sin(π/(2β + 1))
.

Proof. From properties of beta functions (and gamma functions), it follows that for r ≥ 0 and
p > r + 1 we have

B(p, 1, r) = p−1Beta
(
1−

r + 1

p
,
r + 1

p

)
=

π

p2 sin(π(r + 1)/p)
. (7)

From (7) it follows that

Rπ(θ̂) =
∞∑

i=1

τ2
i (β)n

−1

τ2
i (β) + n−1

=
∞∑

i=1

1

n+ i2β+1
= B(2β + 1, 1, 0)n−2β/(2β+1)(1 + o(1))

=
πn−2β/(2β+1)

(2β + 1)2 sin(π/(2β + 1))
(1 + o(1))

as n → ∞. △

Thus, the Bayesian mean-square risk for the Bayesian estimator (5) for a known β has asymptot-
ically the same convergence rate as that for the minimax risk over the ellipsoid Θβ(Q). Moreover,

it can be shown that if the parameter θ belongs to a Sobolev subset Θβ =
{
θ :

∞∑
i=1

i2βθ2
i < ∞

}
of

the space ℓ2, then the Bayes estimator θ̂(β) (5) belongs to the same subset with probability tending
to 1 as n → ∞. Thus, the parameter β involved in the definition of the prior distribution πβ can
be considered as the smoothness of the signal θ, since the prior distribution πβ describes the worst
situation from the viewpoint of minimax approach, being the least advantageous in terms of the
convergence rate of the minimax risk.

Remark 1. We can construct a family of prior distributions {πδ(β), δ > 1 − 2β}, each of them
leading to a Bayesian estimator θ ∼ πδ(β) with the minimax convergence rate such that the
components θi are independent and

θi ∼ N (0, τ2
i (β)), τ2

i (β) = τ2
i (β, δ, n) = n

δ−1

2β+1 i−(2β+δ), i ∈ N. (8)

In the present paper we consider only one prior distribution from this family, namely, that defined
by δ = 1. This distribution is independent of n, as is conventional in the Bayesian tradition.
However, for formal constructions of estimators, the condition of independence of n of the prior
distribution is not necessarily required.

2.2. Empirical Bayes Approach

Consider now the situation where the smoothness parameter β is unknown. Denote by β0 > 0
the real value of the unknown parameter β. Recall that the marginal distribution of the vector X
is as follows: the random variables Xi are independent and Xi ∼ N

(
0, τ2

i (β0) + n−1
)
, i ∈ N.

Let Ln(β) = Ln(β,X) be the marginal likelihood of the sample X = (Xi)i∈N
:

Ln(β) =
∞∏

i=1

1√
2π

(
τ2
i (β) + n−1

) exp
{
−

X2
i

2
(
τ2
i (β) + n−1

)
}
.
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Note that maximizing the function Ln(β) is equivalent to minimizing the function Zn(β) =
−2 logLn(β). To avoid difficulties in finding the minimum of the function Zn(β) for {Zn(β) = ±∞},

it is convenient to introduce a new variable Z̄n(β) = Zn(β, β̄) = −2 log
Ln(β)

Ln(β̄)
for some reference

value β̄ > 0. This variable is almost surely finite. For any set Sn ⊆ (0,+∞), define the marginal
likelihood estimator of the parameter β over the set Sn,

β̂ = β̂(Sn) = β̂(Sn,X, n) = argmin
β∈Sn

Z̄n(β). (9)

This means that Zn(β̂(Sn)) ≤ Zn(β
′) for any β′ ∈ Sn. Thus, Zn(β̂(Sn), β

′) ≤ 0 for any β′ ∈ Sn.
Denote, for brevity,

ai = ai(β, β
′) =

1

τ2
i (β) + n−1

−
1

τ2
i (β

′) + n−1
, (10)

bi = bi(β, β
′) =

τ2
i (β) + n−1

τ2
i (β

′) + n−1
. (11)

Then Zn(β, β
′) =

∞∑
i=1

ai(β, β
′)X2

i +
∞∑
i=1
log bi(β, β

′), and for any β′ ∈ Sn we have

∞∑

i=1

ai(β̂(S), β
′)X2

i ≤
∞∑

i=1

log
[
bi(β̂(S), β

′)
]−1

. (12)

Throughout what follows, we assume that the following condition on the set Sn holds.

Condition S. We have Sn = {κn + kεn, k = 0, 1, . . . ,Mn − 1}. The sequences κn, εn > 0 and
Mn ∈ N are such that κn → 0, εn → 0, and Mnεn → ∞ as n → ∞.

Thus, the cardinality of the set Sn is |Sn| =Mn < ∞.

For an unknown parameter θ, we construct an empirical Bayes estimator θ̂ = (θ̂1, θ̂2, . . . ) as
follows:

θ̂i = θ̂i(β̂) =
τ2
i (β̂)Xi

τ2
i (β̂) + n−1

, i ∈ N. (13)

2.3. Main Result

Theorem. Let the estimator θ̂ be defined by relation (13). Assume that Condition S holds and

the parameters εn, κn, and Mn are such that εn = o(1/ log n) and

κ
−1
n M1/2

n exp

{
−

ε2
n(log n)

2n1/(2β0+2)

128(2β0 + 1)2

}
= o(n−2β0/(2β0+1))

as n → ∞. Then

R(θ̂, θ) = R(θ̂(β0), θ)(1 + o(1)) =
n−2β0/(2β0+1)π

(2β0 + 1)2 sin(π/(2β0 + 1))
(1 + o(1))

as n → ∞.

Remark 2. The sequences εn, κn, and Mn can be chosen in different ways to satisfy the condi-
tions of the theorem. For example, εn = 1/(log n)2, κn = 1/ log n, and Mn = ⌊(log n)3⌋ will do.
In fact, it does not make sense to choose the sequence κn converging to zero faster than 1/ log n,
since already for β0 = κn = 1/ log n the risk does not converge to zero. It either makes no sense to
choose the sequence Mn converging to infinity faster than a sequence with log n = o(Mnεn), since
for β0 = log n the parametric convergence rate of the risk is n

−1.
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Proof. It is obvious that

R(θ̂, θ) = E ‖θ̂(β̂)− θ‖2

= E
[
‖θ̂(β̂)− θ‖2I{|β̂ − β0| ≥ 2εn}

]
+E

[
‖θ̂(β̂)− θ‖2I{|β̂ − β0| < 2εn}

]
= T1 + T2.

Note that

T2 = E
[
‖θ̂(β̂)− θ‖2I{|β̂ − β0| < 2εn}

]
≤ max

β: |β−β0|<2εn

E ‖θ̂(β)− θ‖2.

Recall that E(Xi − θi)
2 = n−1 and E θ2

i = i−(2β0+1). Then

E ‖θ̂(β)− θ‖2 =
∞∑

i=1

τ4
i (β)E(Xi − θi)

2

(τ2
i (β) + n−1)2

+
∞∑

i=1

n−2 E θ2
i

(τ2
i (β) + n−1)2

=
∞∑

i=1

n

(i2β+1 + n)2
+

∞∑

i=1

i4β−2β0+1

(i2β+1 + n)2

=
∞∑

i=1

1

i2β+1 + n
+

∞∑

i=1

i4β−2β0+1 − i2β+1

(i2β+1 + n)2

as n → ∞. For εn = o(1/ log n) we have

max
β: |β−β0|<2εn

∞∑

i=1

1

i2β+1 + n
= E ‖θ̂(β0)− θ‖2(1 + o(1)).

Next, the following estimate holds uniformly over |β − β0| < 2εn for εn = o(1/ log n):

∞∑

i=1

|i4β−2β0+1 − i2β+1|

(i2β+1 + n)2
≤

n∑

i=1

|i2β−2β0 − 1|

i2β+1 + n
+

∞∑

i=n+1

1

i2β0+1

≤ o(1)
n∑

i=1

1

i2β0+1 + n
+

∞∑

i=n+1

1

i2β0+1
= o

(
n−2β0/(2β0+1))

as n → ∞. Thus,

T2 ≤ max
β: |β−β0|<2εn

E ‖θ̂(β) − θ‖2 ≤ E ‖θ̂(β0)− θ‖2(1 + o(1))

as n → ∞. Now we have to show that

T1 = o
(
n−2β0/(2β0+1))

as n → ∞. By the Cauchy–Bunyakovskii–Schwartz inequality,

T1 = E
[
‖θ̂(β̂)− θ‖2I{|β̂ − β0| ≥ 2εn}

]
≤

(
E ‖θ̂(β̂)− θ‖4

)1/2(
P

{
|β̂ − β0| ≥ 2εn

})1/2
.

Recall the following fact. Let Z1, Z2, . . . be independent, Zi ∼ N (0, σ2
i ),

∞∑
i=1

σ2
i < ∞; then we have

E
( ∞∑

i=1
Z2

i

)2
≤ 3

( ∞∑
i=1

σ2
i

)2
. Applying twice the elementary inequality (a+ b)2 ≤ 2a2 + 2b2 and the
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above property, we obtain

E ‖θ̂(β̂)− θ‖4 = E

[
∞∑

i=1

(
τ2
i (β̂)(Xi − θi)

τ2
i (β̂) + n−1

−
n−1θi

τ2
i (β̂) + n−1

)2
]2

≤ 2E

[
∞∑

i=1

τ4
i (β̂)ξ

2
i n

−1

(τ2
i (β̂) + n−1)2

+
n−2θ2

i

(τ2
i (β̂) + n−1)2

]2

≤ 4E

[
∞∑

i=1

τ4
i (β̂)ξ

2
i n

−1

(τ2
i (β̂) + n−1)2

]2

+ 4E

[
∞∑

i=1

n−2θ2
i

(τ2
i (β̂) + n−1)2

]2

= 4E

[
∞∑

i=1

nξ2
i

(i2β̂+1 + n)2

]2

+ 4E

[
∞∑

i=1

i4β̂+2θ2
i

(i2β̂+1 + n)2

]2

≤ 4E

[
∞∑

i=1

nξ2
i

(i2κn+1 + n)2

]2

+ 4E

[
∞∑

i=1

θ2
i

]2

≤ 12

[
∞∑

i=1

n

(i2κn+1 + n)2

]2

+ 12

[
∞∑

i=1

i−(2β0+1)

]2

≤ 12

[
∞∑

i=1

i−(2κn+1)

]2

+ 12

[
∞∑

i=1

i−(2β0+1)

]2

≤ 12(1 + (2κn)
−1)2 + 12(1 + (2β0)

−1)2 ≤ 4κ−2
n

for sufficiently large n.

Since εn = o(1/ log n), by Lemma 2 for sufficiently large n we have

P{β̂ = β} ≤ exp

{
−

ε2
n(log n)

2n1/(2β0+2)

64(2β0 + 1)2

}

uniformly over all β such that |β − β0| ≥ 2εn. Therefore,

P
{
|β̂ − β0| ≥ 2εn

}
=

∑

β: |β−β0|≥2εn

P
{
β̂ = β

}
≤ Mn exp

{
−

ε2
n(log n)

2n1/(2β0+2)

64(2β0 + 1)2

}

for sufficiently large n. Taking into account the latter relation and the conditions of the theorem,
we obtain

T1 ≤ 2κ−1
n M1/2

n exp

{
−

ε2
n(log n)

2n1/(2β0+2)

128(2β0 + 1)2

}
= o(n−2β0/(2β0+1)),

and the theorem follows. △

3. AUXILIARY RESULTS

Recall that Xi ∼ N (0, n−1 + τ2
i (β0)), where β0 is a real value of the unknown parameter β.

Lemma 1. For all β, β′ ∈ Sn such that either β′ < β or β < β′ < β0 and for any 0 < λ ≤ 1/2,
we have

P{β̂ = β} ≤
∞∏

i=1

(
τ2
i (β

′) + n−1

τ2
i (β) + n−1

)λ(
1 + 2λ

(τ2
i (β

′)− τ2
i (β))(τi(β0) + n−1)

(τ2
i (β

′) + n−1)(τ2
i (β) + n−1)

)−1/2

. (14)
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Proof. Denote ai = ai(β, β
′) and bi = bi(β, β

′). The proof follows from the Markov inequality.
Indeed, since β′ ∈ Sn, from the definition of β̂ we have

P{β̂ = β} = P
{
Zn(β, β

′′) ≤ 0, ∀ β′′ ∈ Sn
}
≤ P

{
Zn(β, β

′) ≤ 0
}

= P

{
−

∞∑

i=1

aiX
2
i ≥

∞∑

i=1

log bi

}

≤ E exp

{
− λ

∞∑

i=1

aiX
2
i

}
exp

{ ∞∑

i=1

log(b−λ
i )

}
.

Recall that Xi ∼ N (0, n−1+ τ2
i (β0)). There is the following simple property of a Gaussian random

variable η ∼ N (µ, σ2):

E exp{κη2} = (1− 2κσ2)−1/2 exp

{
κµ2

1− 2κσ2

}
for κ <

1

2σ2
.

Taking into account this formula and the fact that −λai < 1/(2(n−1 + τ2
i (β0))) for all i by the

conditions of the lemma, we obtain

E exp

{
− λ

∞∑

i=1

aiX
2
i

}
=

∞∏

i=1

(
1 + 2λai(β, β

′)(τ2
i (β0) + n−1)

)−1/2

=
∞∏

i=1

(
1 + 2λ

(τ2
i (β

′)− τ2
i (β))(τi(β0) + n−1)

(τ2
i (β

′) + n−1)(τ2
i (β) + n−1)

)−1/2

,

which proves the lemma. △

Lemma 2. Let β ∈ Sn, |β − β0| ≥ 2εn, where εn = o(1/ log n). Then there exists a positive

M =M(β0) such that for all n ≥ M we have

P{β̂ = β} ≤ exp

{
−
1

64
n1/(2β0+εn+1)

(
εn log n

2β0 + 1

)2
}
.

Proof. For λ = 1/2, relation (14) is given by P{β̂ = β} ≤
∞∏
i=1

(
1 + zi

)1/2
, where

zi ≡ zi,n(β, β0, β
′) =

(τ2
i (β0)− τ2

i (β
′))(τ2

i (β)− τ2
i (β

′))

τ2
i (β)τ

2
i (β

′) + τ2
i (β

′)τ2
i (β0)− τ2

i (β)τ
2
i (β0) + 2n−1τ2

i (β
′) + n−2

=
n2

(
i2β′

− i2β
)(
i2β′

− i2β0
)

n2i2β0+2β′ + n2i2β′+2β − n2i4β′ + 2ni2β0+2β′+2β+1 + i2β0+4β′+2β+2
.

Let β′ ∈ Sn belong to the interval between β0 and β (independently of which of these two
variables is larger). Since

zi = −1 +
2n−1τ2

i (β
′) + n−2 + τ4

i (β
′)

τ2
i (β)τ

2
i (β

′) + τ2
i (β

′)τ2
i (β0)− τ2

i (β)τ
2
i (β0) + 2n−1τ2

i (β
′) + n−2

,

we have −1 ≤ zi ≤ 0 for all i ∈ N. Thus, for any β′ ∈ Sn in the interval between β0 and β (such
that β0 ≤ β′ ≤ β or β ≤ β′ ≤ β0), for all N1 ∈ N and N2 ∈ N ∪ {+∞} with N1 ≤ N2, we have

P{β̂ = β} ≤
∞∏

i=1

(
1 + zi

)1/2
≤ exp

{
1

2

∞∑

i=1

zi

}
≤ exp

{
1

2

N2∑

i=N1

zi

}
. (15)
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Rewrite zi as zi ≡
xi

yi
, where

xi = n2(i2β′

− i2β)(
i2β′

− i2β0
)
,

yi = n2i2β0+2β′

+ n2i2β′+2β − n2i4β′

+ 2ni2β0+2β′+2β+1 + i2β0+4β′+2β+2.

First consider the case β − β0 ≥ 2εn and, correspondingly, β0 < β′ < β. For all i ≥ N1 we have

xi = −n2i2β(
1− i2β′−2β)

i2β′(
1− i2β0−2β′)

≤ −n2i2(β+β′)
(
1−N

2(β′−β)
1

)(
1−N

2(β0−β′)
1

)
.

Similarly we can estimate yi:

yi = n2i2β′(
i2β0 − i2β′)

+ i2β+2β′(
n2 + 2ni2β0+1 + i2β′+2β0+2)

≤ i2β+2β′(
n2 + 2ni2β0+1 + i2β′+2β0+2).

If i ≤ n
1

β′+β0+1 , then yi ≤ 4n2i2(β+β′). Thus, using these estimates, we get

zi =
xi

yi
≤ −

n2i2(β+β′)
(
1−N

2(β′−β)
1

)(
1−N

2(β0−β′)
1

)

4n2i2(β+β′)

= −
1

4

(
1−N

2(β′−β)
1

)(
1−N

2(β0−β′)
1

)
,

where N1 ≤ i ≤ N2 ≤ n
1

β′+β0+1 . Therefore, for all N1 ≤ i ≤ N2 ≤ n1/(β0+β′+1), we have

N2∑

i=N1

zi ≤ −
N2∑

N1

1

4

(
1−N

2(β′−β)
1

)(
1−N

2(β0−β′)
1

)

= −
N2 −N1 + 1

4

(
1−N

2(β′−β)
1

)(
1−N

2(β0−β′)
1

)
.

Thus, using (15) and the latter inequality, for all N1 ≤ N2 ≤ n1/(β0+β′+1) we obtain

P{β̂ = β} ≤ exp

{
1

2

N2∑

i=N1

zi

}
≤ exp

{
−
(N2 −N1 + 1)

8

(
1−N

2(β′−β)
1

)(
1−N

2(β0−β′)
1

)}
. (16)

If β ∈ Sn and β − β0 ≥ 2εn, then there exists β
′ ∈ Sn between β0 and β such that β0 + εn ≤

β′ ≤ min{β0+2εn, β− εn} for sufficiently large n. Indeed, β0 ≥ κn+2εn for sufficiently large n as
κn → 0 and εn → 0; thus, β′ = min{β ∈ Sn : β ≥ β0 + εn} satisfies these inequalities. Note that
for this choice of β′ we have β − β′ ≥ εn and β′ − β0 ≥ εn.

Choose N2 = ⌊n1/(β0+β′+1)⌋ and N1 = ⌊N2/2⌋+1. Since εn → 0 and β′ ≤ β0+2εn, there exists
M1 =M1(β0) such that for all n ≥ M1 we have

log 2−
log n

β′ + β0 + 1
< −

log n

2(2β0 + 1)
.
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Thus, for any n ≥ M1 we have

1−N
−2(β−β′)
1 ≥ 1− (N2/2)

−2(β−β′)

≥ 1− exp{−2(β − β′)[logN2 − log 2]}

= 1− exp

{
2(β − β′)[log 2−

log n

β′ + β0 + 1
]

}

≥ 1− exp

{
− 2(β − β′)

log n

2(2β0 + 1)

}

≥ 1− exp

{
− εn

log n

2β0 + 1

}

(recall that β − β′ ≥ εn). Applying the inequality 1− e−x ≥ x/2 for 0 ≤ x ≤ 3/2 and the fact that

for εn = o(1/ log n) there exists M2 = M2(β0) > 0 such that εn
logn

2β0 + 1
< 3/2 for all n ≥ M2, we

obtain that for any n ≥ max(M1,M2) we have

1−N
−2(β−β′)
1 ≥

εn log n

2(2β0 + 1)
.

Similarly, 1−N
−2(β′−β0)
1 ≥

εn logn

2(2β0 + 1)
for all n ≥ max(M1,M2). Moreover, we have

N2 −N1 + 1 ≥
1

2
N2 ≥

1

2
n

1

β′+β0+1 ≥
1

2
n

1

2β0+εn+1 .

Substituting the obtained estimates into (16) proves the lemma for β − β0 ≥ 2εn.

Now consider the case β − β0 ≤ −2εn. We can apply the same reasoning slightly changed.
Choose β′ = max{β ∈ Sn : β ≤ β0 − εn}, N2 = ⌊n1/(β+β′+1)⌋, and N1 = ⌊N2/2⌋ + 1. Then
n2i2β′+2β0 is the main term in xi and yi. We have

xi = n2(i2β′

− i2β)(
i2β′

− i2β0
)
≤ −n2i2β0+2β′

(
1−N

2(β′−β0)
1

)(
1−N

2(β−β′)
1

)

for all i ≥ N1, and

yi ≤ 4n2i2β0+2β′

for all i ≤ N2. Then zi =
xi

yi
≤ −

1

4

(
1 − N

2(β′−β0)
1

)(
1 −N

2(β−β′)
1

)
. Estimating the factors on the

right-hand side of this relation in a similar way and substituting the estimates into (16), we obtain
the statement of the lemma for β − β0 ≤ −2εn. △

Remark 3. We can formally calculate the Fisher information forXi ∼ N (0, τ2
i (β)+n−1), which is

I(β) = 2
∞∑

i=1

(
n log i

n+ i2β+1

)2

.

It is easy to see that it is of the order of O
(
(log n)2n

1

2β+1

)
. Thus, apparently, the choice of a

sequence εn such that ε2
n = o(n−1/(2β+1) log−2 n) gives the optimal rate of convergence of the

estimate β̂ to β0. However, this plays no role in the proof of the main result.
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