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Abstract. We consider the problem of minimax estimating the fractional derivative of the
order − 1

2
of an unknown function in the Gaussian white noise model. This problem is closely related

to the well-known Wicksell problem. In this paper the second-order minimax approach is developed.
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1. Introduction. In this paper the fractional derivative f (α) of order α = − 1
2

of an unknown function f(t) is estimated from observations in the Gaussian white
noise. The observations are defined as follows:

dx(t) = f(t) dt+ ε dw(t), t ∈ [0, 1], x(0) = 0,(1.1)

where w(t) is the standard Wiener process and ε is a small parameter. The problem
is to estimate the fractional derivative f (−1/2)(t), assuming that f(t) belongs to a
known class of smooth functions. In fact, we will be concerned with two problems:
estimating f (−1/2)(t) at a fixed point t0, and recovering the derivative f (−1/2)(t) on
the unit interval [0, 1].

In order to simplify the technical details we suppose that f(t) is a periodic zero-
mean function. According to [12] we can define the fractional derivative of the or-
der α as

f (α)(t) =

∞∑
k=−∞

〈f, ϕk〉ϕk(t) (2πik)
α,

where 〈·, ·〉 is the inner product in L2(0, 1) and ϕk(t) = exp(2πikt) is a trigonometric
basis. Let θk = 〈f, ϕk〉 be Fourier coefficients of the function f . Then the problem of
estimating the derivative of order − 1

2 at the point t0 becomes similar to estimating
the linear functional

L(θ) =

∞∑
k=−∞

exp(2πikt0)√
2πik

θk.

Likewise, the problem of recovering the fractional derivative of the same order on
the unit interval can be reduced to the problem of estimating the vector (θ1/

√
1,

θ2/
√
2, . . . )T .
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Sometimes the estimation problem can be simplified by conversion from the ob-
servations in the time domain to the observations in the Fourier coefficients space.
Since ϕk(t) is a complete orthonormal system in L2(0, 1), it is easy to see that obser-
vations (1.1) are equal to

Xk = θk + εξk, k = 0,±1,±2, . . . ,(1.2)

where ξk are independent identically distributed (i.i.d.) complex-valued Gaussian ran-
dom variables with the parameters (0, 1):

ξk =

∫ 1

0

ϕk(t) dw(t), θk =

∫ 1

0

ϕk(t)f(t) dt, Xk =

∫ 1

0

ϕk(t) dx(t).

Prior information about unknown parameters is very important for any statistical
problem. In this paper we assume that the unknown function f(t) belongs to an
ellipsoid in L2(0, 1):

θ ∈ Θ =

{
θ :

∞∑
k=1

a2
k|θk|2 � 1

}
.(1.3)

In particular, if the underlying function belongs to the Sobolev class

W β
2 =

{
f :

∫ 1

0

[
f (β)(t)

]2
dt � P

}
,

then the axes of the ellipsoid are defined by a2
k = (2πk)2β/P .

At first glance the problem of estimating the fractional derivative of order − 1
2

seems to be of a rather special interest. Actually, this problem is closely related to
the well-known Wicksell problem [10], which can be formulated as follows. Suppose
that a number of spheres are embedded in an opaque medium. Let the sphere radii be
i.i.d. with an unknown distribution function F (x). The item of interest is F (x). Since
the medium is opaque, we cannot observe a sample of sphere radii directly. We can
only intersect the medium and observe a cross-section showing the circular section
of some spheres. Define the radii of the circles in the cross-section by Y1, . . . , Yn.
The problem is to estimate the distribution function F (x) from these observations.
It can be easily seen that the variables Yi are i.i.d.; denote their distribution function
by G(y). The relations between F and G are known:

1−G(y) =

∫ ∞

y

√
x− y dF (x)

(∫ ∞

0

√
x dF (x)

)−1

,

1− F (x) =

∫ ∞

y

dG(y)√
x− y

(∫ ∞

0

dG(y)√
y

)−1

.(1.4)

For an elementary inference of these formulas we refer the reader to [3]. In
fact, these formulas express the unknown distribution function F (x) in terms of the
derivative of order 1

2 of the distribution function G(y). Here the integrals present
another form of definition of fractional derivatives. Thus the problem is reduced to
estimating the functions G(1/2)(0) and G(1/2)(y) from the observations Y1, . . . , Yn with
unknown density g(y). Obviously, these functions are the derivatives of order − 1

2 of
the distribution density g(y) = G′(y). Undoubtedly, the Wicksell problem does not
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coincide with the problem of estimation in Gaussian white noise. However, they
are closely related. It is well known that the corresponding statistical experiments
are asymptotically equivalent in the Le Cam sense (see [7]). We intentionally avoid
unimportant details and consider the primitive statistical problem in order to clarify
how to construct asymptotically minimax estimates of the second order.

Note that the results concerning asymptotically minimax estimates (as n → ∞)
of the first order in the Wicksell problem were achieved rather recently [3] even though
the optimal rates of convergence are well known (see [6], [4], [2]).

The aim of this paper is to construct asymptotically minimax estimates of the
second order in the model of Gaussian white noise. Transference of the results to
the Wicksell problem is not trivial but rather a question of technique. It is natural
to apply the second-order minimax theory to this problem. The point is that there
are many asymptotically minimax estimates of the first order, and it is impossible to
select the best estimator under the first-order theory framework. On the other hand,
an asymptotically minimax estimate of the second order is to some extent unique.

2. Statement of the problem and main results. Next we will consider a
more general setting of the problem than that in the model (1.2), (1.3). Suppose we
observe real random variables

Xk = θk + εξk, k = 0, 1, . . . ,(2.1)

where ξk are Gaussian independent random variables with parameters (0, 1). It is also
assumed that an unknown vector θ = (θ1, θ2, . . . )

T belongs to the ellipsoid

Θ =

{
θ :

∞∑
k=1

a2
kθ

2
k � 1

}
,(2.2)

where the parameters a2
k are known. There are two problems related to this statistical

model.
The first problem is to find the minimax estimate of the infinite-dimensional

vector v(θ) = (θ1s1, θ2s2, . . . )
T , where the sequence sk satisfies the condition

lim
k→∞

s2
kk = 1.(2.3)

From now on we assume that condition (2.3) holds. By v̂(X) = (v̂1, v̂2, . . . )
T denote

an estimate of the vector v(θ).
The mean square risk of the estimate v̂ is defined as usual:

Rε(v̂,Θ) = sup
θ∈Θ
Eε

θ

∥∥v(θ)− v̂(X)
∥∥2

= sup
θ∈Θ
Eε

θ

∞∑
k=1

∣∣vk(θ)− v̂k
∣∣2,

where Eε
θ is the expectation with respect to the measure generated by observa-

tions (2.1). The minimax risk is defined by rε(Θ) = inf v̂ R
ε(v̂,Θ) over all the estimates

of the vector v(θ). We will show that under some conditions the linear estimates are
asymptotically minimax of the second order. More precisely,

rε(Θ) = inf
v̂∈L

Rε(v̂,Θ) + o(ε2);(2.4)

here L is a class of all linear estimates. We can formulate the following result.
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Theorem 1. Let the sequence |ak||sk| be nondecreasing and

lim
ε→0

log3 1

ε2

∞∑
k=1

a2
k

(|sk| − µ|ak|
)2
+

[ ∞∑
k=1

|ak|
(|sk| − µ|ak|

)
+

]−2

= 0,(2.5)

lim
ε→0

maxm |am|(|sm| − µ|am|)+
∑∞

k=1 |ak| (|sk| − µ|ak|)+∑∞
k=1 a

2
k(|sk| − µ|ak|)2+

< ∞,(2.6)

where µ is a root of

ε2
∞∑
k=1

a2
k

( |sk|
µ|ak| − 1

)
+

= 1.(2.7)

Then the linear estimate

ṽk =

(
1− µ|ak|

|sk|
)

+

skXk

is asymptotically minimax of the second order with the minimax risk

rε(Θ) = Rε(ṽ,Θ) + o(ε2) = ε2
∞∑
k=1

|sk|
(|sk| − µ|ak|

)
+
+ o(ε2).

In particular, if ak = (πk)β/
√
P , β > 1

2 , and sk = k−1/2, then the asymptotic
expansion of the minimax risk (ε → 0) is

rε(Θ) =
ε2

2β + 1
log

(2β + 1)P

π2βε2
+ ε2

(
γ − 2

2β + 1

)
+ o(ε2);

here and throughout, γ is the Euler constant.
The second problem regards the estimation of the linear functional

L(θ) =

∞∑
k=1

θksk.

Let L̂(X) be an estimate of the functional L. Its mean square risk is defined by

Rε
0(L̂,Θ) = sup

θ∈Θ
Eε

θ

[
L(θ)− L̂(X)

]2
.(2.8)

The minimax risk, respectively, is

rε0(Θ) = inf
L̂

Rε
0(L̂,Θ),(2.9)

where the infimum is over all the estimates of functional L(θ).
The following theorem yields information about the upper and lower bounds of

minimax risk.
Theorem 2. The following inequalities for the minimax risk hold:

ε2
∞∑
k=1

s2
k(1 + π2ε2a2

k)
−1 � rε0(Θ) � ε2

∞∑
k=1

s2
k(1 + ε2a2

k)
−1.
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We see that there is a gap between the upper and lower bounds. It is easy to
verify that its size equals (ε2 log π)/β over the Sobolev ball. Existence of the gap is
caused by the fact that the linear estimates are not minimax of the second order.
Unfortunately, it is rather difficult to find the explicit minimax estimates in this
problem. That is why we reduce our statistical problem to the simpler one; it is the
recovering functional problem

Lδ(f) =

∫ ∞

δ

f(t)√
t
dt(2.10)

from the observations in Gaussian white noise

dX(t) = f(t) dt+ dw(t), t ∈ [0,∞).(2.11)

A priori information about f(·) is

f ∈ F =

{
f ∈ L2(0,∞) :

∫ ∞

0

t2βf2(t) dt � 1

}
.(2.12)

Asymptotic behavior of the minimax risk in the initial problem can be described
with accuracy o(ε2) in terms of the problem (2.11), (2.12) of estimating the func-
tional Lδ(f). By

ρ = lim
δ→0

{
inf
L̂δ

sup
f∈F
Eθ

[
Lδ(f)− L̂δ

]2
+ log δ

}
denote the limit minimax risk in the problem of estimating Lδ(f). We have the
following result.

Theorem 3. Let sk = k−1/2 and a2
k = (πk)2βP−1 (1 + o(1)) as k → ∞. Then

rε0(Θ) =
ε2

2β
log

P

ε2
+ ε2(γ + ρ− log π) + o(ε2),(2.13)

as ε → 0.

3. Estimation of the derivative on an interval.

3.1. An upper bound. First, to prove Theorem 1 we obtain a trivial upper
bound of the minimax risk

rε(Θ) � inf
v̂∈L

Rε(v̂,Θ).

Recall that here L is the class of all linear estimates. To calculate the minimax risk
over the class of linear estimates we will use the well-known saddle point theorem [14].

Lemma 1. Let µ be a root of (2.7). Then the estimate

v∗k =

(
1− µ

|ak|
|sk|

)
+

skXk

is minimax in the class of linear estimates with the minimax risk

inf
v̂∈L

Rε(v̂,Θ) = ε2
∞∑
k=1

s2
k

(
1− µ

|ak|
|sk|

)
+

.(3.1)
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Proof. A mean square error of the linear estimate v̂k = hkskXk,

Eθ

∞∑
k=1

|vk − v̂k|2 =

∞∑
k=1

s2
k(1− hk)

2θ2
k + ε2

∞∑
k=1

h2
ks

2
k = F ε(h, θ),

is convex with respect to h and linear with respect to θ2
k. Hence it has a saddle point

on the set l2(1,∞)×Θ. We omit simple arithmetic (see, e.g., [14]) showing that the
components of the saddle point are as follows:

h∗
k =

(
1− µ

|ak|
|sk|

)
+

, θ∗2k =
ε2h∗

k

1− h∗
k

= ε2

( |sk|
µ|ak| − 1

)
+

.(3.2)

Here µ is the root of
∑∞

k=1 a
2
kθ

∗2
k = 1. Finally, noting that

inf
v̂∈L

Rε(v̂,Θ) = inf
h

sup
θ∈Θ

F ε(h, θ) = F ε(h∗, θ∗) = ε2
∞∑
k=1

s2
kh

∗
k

we complete the proof.

3.2. A lower bound. We now establish the lower bound of the minimax risk.
Our construction is adapted from [14]. Choose an a priori distribution of the param-
eters θk such that the variance of θk is close to the saddle point (3.2) and the vector
θ lies near the surface of ellipsoid (2.2). More precisely, suppose that θk are normally
distributed with parameters (0, σ2

k), where

σ2
k = (1− δ) ε2

( |sk|
µ|ak| − 1

)
+

, 0 < δ < 1,(3.3)

and µ is the solution of (2.7). Notice that whenever δ = 0 the variance of θk is equal
to the saddle point θ∗2k from (3.2), which determines the minimax linear estimate.
First, we shall show that for small δ > 0 the vector θ does not belong to the ellipsoid
with probability tending to zero, as ε → 0.

Lemma 2. Let the sequence |aksk| be nondecreasing and condition (2.6) hold.
Then for any δ ∈ (0, δ0)

P {θ /∈ Θ} � exp

(
− δ2

4wε

)
, where wε =

∞∑
k=1

a4
kσ

4
k.(3.4)

Proof. Note that

P{θ /∈ Θ} = P

{ ∞∑
k=1

a2
kθ

2
k > 1

}
= P

{ ∞∑
k=1

a2
k(θ

2
k − σ2

k) > δ

}
.

According to Markov’s inequality we have

P{θ /∈ Θ} � e−λδ E exp

[
λ

∞∑
k=1

a2
k(θ

2
k − σ2

k)

]

= e−λδ exp

[
−λ

∞∑
k=1

a2
kσ

2
k − 1

2

∞∑
k=1

log(1− 2λa2
kσ

2
k)

]
(3.5)

for all λ such that 2λ supk a
2
kσ

2
k < 1.
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Choose λ = δ/(2
∑∞

k=1 a
4
kσ

4
k) and check the inequality 1 − 2λa2

kσ
2
k > 0 for suffi-

ciently small δ. To do this we have to show that

sup
k

a2
kσ

2
k

( ∞∑
k=1

a4
kσ

4
k

)−1

< ∞.(3.6)

Combining (3.3) and (2.7) we obtain

maxk a
2
kσ

2
k∑∞

k=1 a
4
kσ

4
k

=
maxm |am| (|sm| − µ|am|)+ ·∑∞

k=1 |ak|(|sk| − µ|ak|)+
(1− δ)

∑∞
k=1 |ak|2(|sk| − µ|ak|)2+

.

By (2.6), the right-hand side in this equality is bounded, and consequently (3.6) holds.
Applying (3.5) and Taylor’s formula we conclude that

P{θ /∈ Θ} � e−λδ exp

(
λ2

∞∑
k=1

a4
kσ

4
k

)
= exp

{
− δ2

4
∑∞

k=1 a
4
kσ

4
k

}
,

and this is precisely the assertion of the lemma.

Lemma 3. Let conditions (2.5) and (2.6) hold. Then

rε(Θ) � ε2
∞∑
k=1

s2
k

(
1− µ

|ak|
|sk|

)
+

+ o(ε2) as ε → 0,(3.7)

where µ is the root of (2.7).

Proof. Let θ̂k be an estimate of the parameter θk. By the triangle inequality, we
can obtain the following lower bound of the minimax risk:

rε(Θ) = inf
θ̂

sup
θ∈Θ
Eθ

∞∑
k=1

s2
k(θk − θ̂k)

2 � inf
θ̂∈Θ

sup
θ∈Θ
Eθ

∞∑
k=1

s2
k(θk − θ̂k)

2.(3.8)

Since

sup
θ∈Θ
Eθ

∞∑
k=1

s2
k(θk − θ̂k)

2 � EEθ1{θ ∈ Θ}
∞∑
k=1

s2
k(θk − θ̂k)

2,

we can continue (3.8) in the following way:

rε(Θ) � inf
θ̂∈Θ
EEθ1{θ ∈ Θ}

∞∑
k=1

s2
k(θk − θ̂k)

2

� inf
θ̂∈Θ
EEθ

∞∑
k=1

s2
k(θk − θ̂k)

2 − sup
θ̂∈Θ

EEθ1{θ /∈ Θ}
∞∑
k=1

s2
k(θk − θ̂k)

2.(3.9)

Recall that variables θk are independent normally distributed with parameters
N (0, σ2

k), where σ2
k are determined in (3.3). Thus θk =

√
1− δ θ∗kξk, where ξk are

N (0, 1)-i.i.d. and θ∗k is the second component of the saddle point (3.2). Combining
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these with Lemma 1 we see that

inf
θ̂∈Θ
EEθ

∞∑
k=1

s2
k(θk − θ̂k)

2 � inf
θ̂
EEθ

∞∑
k=1

s2
k

(√
1− δ θ∗kξk − θ̂k

)2

� (1− δ) inf
θ̂
EEθ

∞∑
k=1

s2
k(θ

∗
kξk − θ̂k)

2

= (1− δ) inf
hk

EEθ

∞∑
k=1

s2
k(θ

∗
kξk − hkXk)

2

= (1− δ) ε2
∞∑
k=1

s2
k

(
1− µ

|ak|
|sk|

)
+

.(3.10)

Now we obtain the lower bound for the last term in the right-hand side of (3.9).
Since θk are Gaussian random variables, it follows that

E

( ∞∑
k=1

s2
kθ

2
k

)2

= 3

∞∑
k=1

s4
kσ

4
k + 2

∑
k 	=l

s2
ks

2
l σ

2
kσ

2
l � 3

( ∞∑
k=1

s2
kσ

2
k

)2

� C.

From this and the Cauchy–Schwarz inequality we have

sup
θ̂∈Θ

EEθ1{θ /∈ Θ}
∞∑
k=1

s2
k(θk − θ̂k)

2

�
[
P{θ /∈ Θ}]1/2 sup

θ̂∈Θ

{
EEθ

[ ∞∑
k=1

s2
k(θk − θ̂k)

2

]2}1/2

� C
[
P{θ /∈ Θ}]1/2.

Combining these, (3.9), (3.10), and Lemma 2 we conclude that for a constant C

rε(Θ) � (1− δ) ε2
∞∑
k=1

s2
k

(
1− µ

√
k |ak|

)
+
− C exp

(
− δ2

Cwε

)
.(3.11)

Let us “improve” the lower bound, maximizing with respect to δ the right-hand side
of this inequality. For abbreviation, we denote

ρε = ε2
∞∑
k=1

s2
k

(
1− µ

√
k |ak|

)
+
.

Choose δ =
√−C0wε log(ρεwε), where C0 is sufficiently large. It is easy to see that

min
δ

{
δρε + C exp

(
− δ2

Cwε

)}
� ρε

√
wε log1/2 1

ρεwε

� Cρε
√
wε log1/2 1

ρε
√
wε

.(3.12)

In addition, by (2.7)

wε =

∞∑
k=1

a4
kσ

4
k =

ε2

µ2

∞∑
k=1

a2
ks

2
k

(
1− µ

|ak|
|sk|

)2

+

=

∞∑
k=1

a2
ks

2
k

(
1− µ

|ak|
|sk|

)2

+

[ ∞∑
k=1

|ak||sk|
(
1− µ

|ak|
|sk|

)
+

]−2

.(3.13)
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To continue (3.12), let us define an integer

N = min

{
k : 1− µ

|ak|
|sk| < 0

}
.(3.14)

Obviously, ρε � ε2 logN . Then (2.7) gives N < ε−2. Hence ρε � ε2 log ε−2. This,
(3.11), (3.12), and (2.5) give inequality (3.7).

The proof of Theorem 1 immediately follows from Lemmas 1 and 3.

3.3. The asymptotic behavior of the minimax risk over the Sobolev
class. In this section we will look more closely at the asymptotic behavior of the
minimax risk over the Sobolev class with coefficients ak = (πk)β/

√
P , where β > 1

2

and sk = k−1/2.
Let N be defined in (3.12). Then we have the following simple relation for N

and µ: µ = (1 + o(1))|sN |/|aN | as ε → 0. Thus we can rewrite (2.7) for N :

ε2
N∑

k=1

a2
k

( |skaN |
|aksN | − 1

)
= 1.

It yields the equation for N ,

N∑
k=1

k2β

[(
N

k

)β+1/2

− 1

]
=

P

π2βε2
.

An easy computation shows that

N =
(
1 + o(1)

) [P (2β + 1)

π2βε2

]1/(2β+1)

as ε → 0.(3.15)

To check (2.5) and (2.6), note that

∞∑
k=1

|aksk|
(
1− µ

|ak|
|sk|

)
+

�
N∑

k=1

kβ−1/2

[
1−

(
k

N

)β+1/2]
� Nβ+6/2,

∞∑
k=1

a2
ks

2
k

(
1− µ

|ak|
|sk|

)2

+

�
N∑

k=1

k2β−1

[
1−

(
k

N

)β+1/2]2
� N2β ,

max
k

|aksk|
(
1− µ

|ak|
|sk|

)
+

� max
k

kβ−1/2

[
1−

(
k

N

)β+1/2]
� Nβ−1/2.

Let us examine the asymptotic behavior of the minimax risk as ε → 0. For any
δ ∈ (0, 1) we have

rε(Θ) = ε2
N∑

k=1

s2
k

(
1− µ

πβkβ

|sk|
√
P

)
= ε2

N∑
k=1

s2
k

[
1−

(
k

N

)β+1/2
]
+ o(ε2)

= ε2
δN∑
k=1

s2
k

[
1−

(
k

N

)β+1/2
]
+ ε2

N∑
k=δN+1

s2
k

[
1−

(
k

N

)β+1/2
]
+ o(ε2)

≡ ε2
[
r1(ε, δ) + r2(ε, δ)

]
+ o(ε2).
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Let us estimate r1(ε, δ). Since k � δN , we have 1 − (k/N)β+1/2 = 1 + O(δβ+1/2) as
δ → 0. Consequently,

r1(ε, δ) = logN + γ + log δ +O
(
δβ+1/2 logN

)
+ o(1).(3.16)

Let us turn to r2(ε, δ). It is easy to see that

r2(ε, δ) =

∫ 1

δ

x−1
(
1− xβ+1/2

)
dx+O(N−1δ−1)

= − log δ − 2

2β + 1

(
1− δβ+1/2

)
+O

(
N−1δ−1

)
.(3.17)

Choose δ = (logN)−1−q, where q > 0. Therefore, combining (3.16) with (3.17) yields

r1(ε, δ) + r2(ε, δ) = logN + γ − 2

2β + 1
+ o(1).

Hence by (3.15) we have the following expansion for the minimax risk as ε → 0:

rε(Θ) =
ε2

2β + 1
log

P (2β + 1)

ε2π2β
+ ε2

(
γ − 2

2β + 1

)
+ o(ε2).

4. Estimation of the derivative at a fixed point.

4.1. An upper bound. In this section we establish the upper bound of the min-
imax risk rε0(Θ) in the problem of estimating the linear functional L(θ) =

∑∞
k=1 skθk.

We shall look for it in the class of linear estimates L.
Lemma 4. The minimax risk of estimating the functional L(θ) in the class of

linear estimates is

inf
L̂∈L

Rε
0(L̂,Θ) = ε2

∞∑
k=1

s2
k(1 + ε2a2

k)
−1.(4.1)

The estimate

L̂h(X) =

∞∑
k=1

(1 + ε2a2
k)

−1skXk

is a minimax linear estimate.
Proof. Consider L̂h(X) =

∑∞
k=1 hkskXk. It is easily seen that

Rε
0(L̂h,Θ) = sup

θ∈Θ

[ ∞∑
k=1

θk(1− hk) sk

]2

+ ε2
∞∑
k=1

h2
ks

2
k.

Applying the Cauchy–Schwarz inequality, we have

Rε
0(L̂h,Θ) =

∞∑
k=1

a2
kθ

2
k

∞∑
k=1

a−2
k (1− hk)

2s2
k + ε2

∞∑
k=1

h2
ks

2
k

=

∞∑
k=1

a−2
k s2

k(1− hk)
2 + ε2

∞∑
k=1

h2
ks

2
k.

It is a simple matter to check that the minimum with respect to hk of the right-hand
side is attained by ĥk = (1 + ε2a2

k)
−1. This completes (4.1).
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4.2. A lower bound. We now find the lower bound of the minimax risk rε0(Θ).
To do this we will use the standard arguments of [13]. Assume that θk = θbk, where θ
is a random variable and bk is a fixed sequence. Then we have to estimate the
parameter

L(θ) = θ

∞∑
k=1

bksk(4.2)

from the observations Xk = θbk + εξk. Note that
∑∞

k=1 bkXk is a sufficient statistic.
Thus we only need the observation

Y =

∞∑
k=1

bkXk = θ

∞∑
k=1

b2k + ε2
∞∑
k=1

bkξk

for estimating the parameter θ. Hence we have an equivalent problem of estimating
the parameter L(θ) (see (4.2)) from the observation

Y ′ = θ + ε2ξ ‖b‖−1,(4.3)

where ξ ∼ N (0, 1) and ‖ · ‖ is a norm in l2(1,∞). At the same time, condition (2.2)
yields the following restriction on θ:

θ2 �
( ∞∑

k=1

a2
kb

2
k

)−1

.(4.4)

Lemma 5. The following lower bound for the risk rε0(Θ) holds:

rε0(Θ) � ε2
∞∑
k=1

s2
k

(
1 + ε2π2a2

k

)−1

.(4.5)

Proof. Set A = (
∑∞

k=1 a
2
kb

2
k)

−1/2. Note that

rε0(Θ) � inf
L̂

sup
|θ|�A

Eθ

[
θ

∞∑
k=1

bksk − L̂(Y ′)

]2

=

( ∞∑
k=1

bksk

)2

inf
θ̂

sup
|θ|�A

Eθ(θ − θ̂)2.(4.6)

Let ν be the a priori probability density of the parameter θ, which is supported
in the interval [−A,A]. Then we have

sup
|θ|�A

Eθ(θ − θ̂)2 �
∫
Eθ(θ − θ̂)2ν(θ) dθ.(4.7)

Then from the Van Trees inequality [11] we obtain∫
Eθ(θ − θ̂)2ν(θ) dθ �

[
EI(pθ) + I(ν)

]−1
.(4.8)
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The Fisher information in the right-hand side of this inequality consists of, respec-
tively,

I(pθ) =

∫
p′θ

2
(x)

pθ(x)
dx, I(ν) =

∫ A

−A

ν′2(x)
ν(x)

dx;

here pθ(·) is the probability density of observations (4.3). Minimizing the Fisher infor-
mation I(ν) with respect to the prior density ν, we can easily assert that infν I(ν) =
I(ν∗) = π2A2, where ν∗(x) = A−1 cos2[πx/(2A)]. Since EI(pθ) = ‖b‖2/ε2, we see
from (4.6)–(4.8) that

rε0(Θ) �
( ∞∑

k=1

bksk

)2(
‖b‖2ε−2 + π2

∞∑
k=1

a2
kb

2
k

)−1

.

Let us “improve” this lower bound, maximizing with respect to bk the right-hand side
of the inequality. It is easy to see that the maximum is attained by b∗k = sk(ε

−2 +
π2a2

k)
−1. This yields (4.5).

The proof of Theorem 2 immediately follows from Lemmas 4 and 5.

4.3. The asymptotic behavior of the minimax risk over the Sobolev
class. Here we investigate the asymptotic behavior of the bounds for the minimax
risk as ε → 0. Set ak = (πk)β/

√
P and sk = k−1/2. Let N = max{k : |ak| < 1/ε}.

Then we have

∞∑
k=1

s2
k(1 + ε2a2

k)
−1 = ε2

δN∑
k=1

k−1(1 + ε2a2
k)

−1 + ε2
∞∑

k=δN+1

k−1(1 + ε2a2
k)

−1

≡ ε2
[
S1(ε, δ) + S2(ε, δ)

]
,(4.9)

where δ ∈ (0, 1) is a number depending on ε, which will be chosen later. Note that as
ε → 0

S1(ε, δ) =

δN∑
k=1

k−1 +O
(
δ2β
)
= logN + log δ + γ +O

(
δ2β
)
.(4.10)

Taking into account the fact that N = (1 + o(1))π−1(P/ε2)1/(2β), we obtain

S2(ε, δ) =

∞∑
k=δN+1

k−1

[
1 +

ε2(πk)2β

P

]−1

=

∫ ∞

δ

x−1(1 + x2β)−1 dx+O
(
N−1δ−1

)
.(4.11)

On the other hand, it is easy to show that∫ ∞

δ

x−1(1 + x2β)−1 dx = − log δ + (2β)−1 log(1 + δ2β).

Then choosing δ = log−1 ε−2 and applying (4.9)–(4.11), we have the asymptotic
expansion for the upper bound:

rε0(Θ) �
∞∑
k=1

s2
k(1 + ε2a2

k)
−1 =

ε2

2β
log

P

ε2
+ ε2 (γ − log π) + o(ε2).(4.12)



MINIMAX ESTIMATION OF A FRACTIONAL DERIVATIVE 631

Obviously, the asymptotic expansion of the lower bound (4.5) is similar, with the
only difference being in replacing P in (4.12) by P/π2. Therefore the asymptotic
behavior for the lower bound is

rε0(Θ) �
∞∑
k=1

s2
k(1 + ε2π2a2

k)
−1 =

ε2

2β
log

P

π2ε2
+ ε2 (γ − log π) + o(ε2).

Thus there is a gap between the upper and lower bounds. It equals ε2β−1 log π and
decreases with respect to increasing the smoothness β.

4.4. Nonlinear estimation. In this section we express the minimax risk rε0(Θ)
in terms of the problem (2.10)–(2.12). It is assumed that a2

k = (πk)2β/P and
sk = k−1/2.

Set N = max{k : |ak| < 1/ε} as before. Let

Rδ = inf
L̂δ

sup
f∈F
Eθ

[
Lδ(f)− L̂δ

]2
+ log δ

be the normalized minimax risk.
Lemma 6. The following inequality holds:

r2
ε(Θ) � ε2

2β
log

P

ε2
+ ε2γ + ε2 lim

δ→0
Rδ + o(ε2) as ε → 0.

Proof. Let us divide the set of indices {1, 2, . . . } into two subsetsK1 = {1, . . . , δN}
and K2 = {δN + 1, . . . }, where δ is sufficiently small. Then the functional to be
estimated can be rewritten as L(θ) = L1(θ) + L2(θ), where

L1(θ) =
∑
k∈K1

skθk, L2(θ) =
∑
k∈K2

skθk.

Further, for a number α ∈ (0, 1) fix two sets

Θ1 =

{
θk, k ∈ K1 :

∑
k∈K1

a2
kθ

2
k � α

}
,

Θ2 =

{
θk, k ∈ K2 :

∑
k∈K2

a2
kθ

2
k � 1− α

}
.

(4.13)

For abbreviation, we write X1 = (X1, . . . , XδN )T and X2 = (XδN+1, . . . )
T .

Let π1(θ), θ ∈ Θ1 and π2(θ), θ ∈ Θ2 be the prior distribution densities on the sets Θ1

and Θ2; let p1(X1|θ), θ ∈ Θ1 and p2(X2|θ), θ ∈ Θ2 be, respectively, the distribution
densities of the vectors X1, X2.

Therefore

inf
L̂

sup
θ∈Θ

Eθ

[
L1(θ) + L2(θ)− L̂

]2 � inf
L̂

EEθ1,θ2

[
L1(θ1) + L2(θ2)− L̂

]2
;(4.14)

here E is the expectation with respect to the measure with density π1(θ1)π2(θ2). Note

that the infimum of the right-hand side is attained, whence L̂ is the Bayes estimator:

L̂(X) =

∫
Θ1

∫
Θ2

[L1(θ1) + L2(θ2)] p1(X1 | θ1) p2(X2 | θ2)π1(θ1)π2(θ2) dθ1 dθ2∫
Θ1

∫
Θ2

p1(X1 | θ1) p2(X2 | θ2)π1(θ1)π2(θ2) dθ1 dθ2
.
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It is easy to see that L̂(X) = L̂1(X1) + L̂2(X2), where L̂1(·) and L̂2(·) are Bayes
estimators of the vectors θ1 and θ2, respectively. Since these estimators are nonbiased,
we have

inf
L̂

EEθ1,θ2

[
L1(X1)− L2(X2)− L̂

]2
= EEθ1

[
L1(θ1)− L̂1(X1)

]2
+EEθ2

[
L2(θ2)− L̂2(X2)

]2
.(4.15)

Let us recall that the densities π1 and π2 were chosen arbitrarily. Consequently,

sup
πi

EEθi

[
Li(θi)− L̂i(Xi)

]2
= sup

θi∈Θi

Eθi

[
Li(θi)− L̂i(X)

]2
, i = 1, 2.

Thus combining (4.14) and (4.15) we conclude that

rε0(Θ) � rε0(Θ1) + rε0(Θ2).(4.16)

Hence our problem can be divided into two independent ones. These two problems
deal with estimating the functionals L1(θ), θ ∈ Θ1 and L2(θ), θ ∈ Θ2, respectively.

The lower bound for rε0(Θ1) follows by the same method as in Lemma 5. Set
θk = bkζ with k ∈ K1, where ζ is some random variable. The condition θ ∈ Θ1 yields
the restriction on ζ: ζ2

∑δN
k=1 a

2
kb

2
k � α. Therefore it can be easily seen (see the proof

of Lemma 5) that

rε0(Θ1) � ε2
δN∑
k=1

k−1

(
1 +

ε2π2a2
k

α

)−1

.(4.17)

Note also that

δN∑
k=1

k−1

(
1 +

ε2π2a2
k

α

)−1

�
δN∑
k=1

k−1

(
1− π2a2

kε
2

α

)

= log δN + γ + o(1)− ε2π2

α

δN∑
k=1

a2
k

k

= log δN + γ + o(1)− α−1O
(
δ2β
)
.

Choosing δ2β/α = o(1) as ε → 0, we infer from these and (4.17) the inequality

rε0(Θ1) � ε2
[
logN + log δ + γ + o(1)

]
.(4.18)

Consider now the second term in the right-hand side of (4.16). Notice that we

can estimate the functional LA
δ (θ) =

∑AN
k=δN θk/

√
k instead of L2(θ) since

rε0(Θ2) � inf
L̂

sup
θ∈Θ2

Eε
θ

[
LA
δ (θ)− L̂

]2
.(4.19)

Let us consider a new loss function

wB(x) =

{
x2, |x| < B,

B2, |x| � B,

where B is a positive number. Since x2 � wB(x), (4.19) gives

rε0(Θ2) � ε2 inf
L̂

sup
θ∈Θ2

Eε
θ wB

[
ε−1(LA

δ (θ)− L̂)
]
.(4.20)
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Let Fα(A,Q) be the set of all functions f such that f(x) = 0 for x /∈ [0, A],
supx f

′(x) � Q, and ∫ A

0

x2βf(x) dx � 1− 2α.(4.21)

Set

θk =
P 1/2

Nβ+1/2 πβ
f

(
k

N

)
.(4.22)

Since the derivative f ′(t) is bounded on the interval [0, A], we see that

AN∑
δN

a2
kθ

2
k � 1

N

AN∑
k=1

(
k

N

)2β

f2

(
k

N

)
=

∫ A

0

t2βf2(t) dt+O

(
Q

N

)
.

This gives θ ∈ Θ2. In the same manner we can see that the functional being estimated
can be approximated in the following way:

LA
δ (θ) =

ε

N

AN∑
k=δN

f(k/N)√
k/N

= ε

∫ A

δ

f(t)√
t
dt+ o(ε).(4.23)

Further note that the observations rewritten in terms of f(·) are

Xk =
P 1/2

Nβ+1/2πβ
f

(
k

N

)
+ εξk.

Noting that
√
P/(Nβπβ) = (1 + o(1)) ε, we deduce the equivalent observations

Yk = f

(
k

N

)
+
(
1 + o(1)

)√
N ξk.(4.24)

Let us pass from these observations to the equivalent observations with continuous
time. Denote by f̄(t) the step function such that f̄(t) = f(k/N) as |t−k/N | � 1/(2N).
Therefore the observations (4.24) are equivalent to

dY (t) = f̄(t) dt+ dw(t), t ∈ [0, A],(4.25)

where w(t) is the standard Wiener process. Note that ‖f̄ − f‖ → 0 as ε → 0. This
means that the problem of estimating the functional

LA
δ (f) =

∫ A

δ

f(t)√
t
dt

from observations (4.25) is asymptotically equivalent (see, e.g., [1]) to the problem of
estimating this functional from the observations

dY (t) = f(t) dt+ dw(t), t ∈ [0, A].(4.26)

This means that

inf
L̂

sup
f∈Fα(A,Q)

EfwB

{
LA
δ (f)− L̂(Y )

}
� inf

L̂

sup
f∈Fα(A,Q)

EfwB

{
LA
δ (f)− L̂(Y )

}
+ o(1).
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This, (4.23), and (4.20) yield

lim
ε→0

ε−2rε0(Θ2) � inf
L̂

sup
f∈Fα(A,Q)

EfwB

[
LA
δ (f)− L̂

]
.

A passage to the limit as B → ∞, Q → ∞, and α → 0 (see also (4.16) and (4.18))
completes the proof of the lemma.

Let us show now that the bound obtained cannot be improved.
Lemma 7. The following inequality holds as ε → 0:

rε0(Θ) � ε2 logN + ε2γ + ε2 lim
δ→0

Rδ + o(ε2).

Proof. We can divide the observations into two parts in the same manner as in
the proof of the lower bound. The underlying functional L(θ) can be rewritten as

the sum of two functionals L1(θ) and L2(θ). Take the projection estimator L̂1(X) =∑δN
k=1 Xk/

√
k as an estimate of the functional L1(θ) =

∑δN
k=1 θk/

√
k. Then it is easy

to estimate the risk

rε0(Θ) � inf
L̂2

sup
θ∈Θ

Eε
θ

[
L1(θ) + L2(θ)− L̂1(X)− L̂2(X)

]2
= ε2

δN∑
k=1

k−1 + inf
L̂2

sup
θ∈Θ

Eε
θ

[
L2(θ)− L̂2(X)

]2
.(4.27)

It is clear that we have to obtain an upper bound for the last term. To do this, let us
reduce our problem with continuous time (2.10)–(2.12) to the initial discrete problem.
To be precise, we shall prove that

inf
L̂2

sup
θ∈Θ

Eε
θ

[
L2(θ)− L̂2(X)

]2
+ ε2 log δ

� ε2 inf
L̂δ

sup
f∈F
Ef

[
L̂δ(X)− Lδ(f)

]2
+ ε2 log δ + o(ε2);(4.28)

here the functional Lδ(f) is defined in (2.10). Let F be the set of all step functions
from F such that

f̄(x) =
∞∑

k=δN

f

(
k

N

)
1

{
k

N
� x <

k + 1

N

}
.

Obviously, for any estimate L̂δ(X) the following inequality holds:

sup
f∈F
Ef

[
Lδ(f)− L̂δ(X)

]2
� sup

f∈F
Ef

[
Lδ(f)− L̂δ(X)

]2
.(4.29)

At the same time, observations (2.11) are equivalent to

Xε
k = f

(
k

N

)
+
√
N ξk.(4.30)

Let θk be defined in (4.22). Then observations (4.30) are equivalent to

Zε
k = θk + (1 + o(1)) εξk.(4.31)
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In terms of θk, the underlying functional is

Lδ(f̄) =

∫ ∞

δ

f̄(t)√
t
dt =

πβNβ+1/2

√
P

∞∑
k=δN

θk

∫ (k+1)/N

k/N

dt√
t

=
1 + o(1)

ε

∞∑
k=δN

θk√
k
− 1 + o(1)

ε

∞∑
k=δN

θk
1√

k(
√
k + 1 +

√
k)2

.(4.32)

The restrictions on f̄ can be recalculated in the restrictions on θk:

1 �
∫ ∞

0

t2β f̄2(t) dt =
π2β

P (2β + 1)

∞∑
k=δN

θ2
k

[
(k + 1)2β+1 − k2β+1

]
� π2β

P

∞∑
k=δN

θkk
2β ,

i.e.,

∞∑
k=δN

a2
kθ

2
k � 1.(4.33)

Thus applying the Cauchy–Schwarz inequality, we obtain from this and (4.32)[
εLδ(f̄)−

∞∑
k=δN

θk√
k

]2

� O
(
(δN)−2β−2

)
+ o

(
(δN)−2β

)
.

Consequently, combining this inequality with (4.33), (4.31), and (4.29), we ob-
tain (4.28). The lemma immediately follows from (4.27).

The proof of Theorem 3 is straightforward (see Lemmas 6 and 7).
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