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Abstract

This paper considers a problem of adaptation in estimating a fractional antiderivative of an unknown drift density from

observations in Gaussian white noise. This problem is closely related to the Wicksell problem. Under the assumption that

the drift density belongs to a Sobolev class with unknown smoothness, an adaptive estimator is constructed.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

We observe noisy data

X k ¼ yk þ exk; k ¼ 1; 2; . . . , (1)

where xk are i.i.d. Nð0; 1Þ, and the parameter e40 is assumed to be known. Our goal is to recover a vector
vðyÞ ¼ ðv1ðyÞ; v2ðyÞ; . . .Þ, with components vkðyÞ ¼ yk=

ffiffiffi
k
p

, such that vðyÞ 2 ‘2.
The problem of estimating vðyÞ was recently considered by Golubev and Enikeeva (2001). There, it is

assumed that the vector y ¼ ðy1; y2; . . .Þ belongs to a certain ellipsoid Y:

y 2 Y ¼ y :
X1
k¼1

a2
ky

2
kp1

( )
, (2)

with fixed coefficients fakg. For example, if Y ¼ YbðPÞ is a Sobolev ellipsoid with the smoothness parameter b
and radius P, then ak ¼ ðpkÞb=

ffiffiffiffi
P
p

. Under assumption (2), the authors follow the classical approach of Pinsker
(1980) to obtain an asymptotically minimax estimator of vðyÞ. Unfortunately, ak, the parameters of the
ellipsoid, often cannot be completely specified a priori. Moreover, the estimator in Golubev and Enikeeva,
2001 depends on an implicitly given smoothness parameter. Therefore, there arises the problem of adaptive
estimation. In adaptive estimation, one usually has a list of models, for example, a family of Sobolev ellipsoids
YbðPÞ where P is fixed, the parameter b belongs to some set B, but otherwise is unknown. It is then desirable
e front matter r 2006 Elsevier B.V. All rights reserved.
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to construct an estimator that depends only on the observations X 1;X 2; . . . and is asymptotically minimax for
any Yb, b 2 B. Such an estimator is called an adaptive estimator.

To motivate our investigation, consider the stochastic differential equation

dxðtÞ ¼ gðtÞdtþ edwðtÞ; t 2 ½0; 1�; xð0Þ ¼ 0, (3)

where wðtÞ is the standard Wiener process, e40 is a small parameter, and the drift density gðtÞ is an unknown
periodic function. We can consider the observations (3) in the domain of their Fourier coefficients:eX k ¼

eyk þ eexk; k ¼ �1;�2; . . . , (4)

where

eX k ¼

Z 1

0

fkðtÞdxðtÞ; eyk ¼

Z 1

0

fkðtÞgðtÞdt

and exk ¼
R 1
0 fkðtÞdwðtÞ are i.i.d. Nð0; 1Þ; ffkg is the trigonometric basis of L2ð0; 1Þ.

It is well-known that the derivative of order a 2 R of the function gðtÞ can be defined by the following
formula (Zygmund, 1968):

gðaÞðtÞ ¼
X1

k¼�1

eykfkðtÞð2pikÞ
a,

and, consequently,

gð�1=2ÞðtÞ ¼
X1

k¼�1

eykffiffiffi
k
p fkðtÞð2piÞ

�1=2.

The derivative of negative order is called an antiderivative. Thus, the problem of estimating vðyÞ from the
observations (1) is similar to the problem of recovering the fractional antiderivative of order � 1

2
from the

observations (3).
The latter problem is, in turn, closely related to the Wicksell problem (Wicksell, 1925), formulated as

follows: a number of spheres are embedded in an opaque medium. Let their radii be i.i.d. with an unknown
distribution function F ðxÞ. Since the medium is opaque, we cannot observe the radii of spheres directly.
Instead, we intersect the medium by a plane and observe resulting circular cross-sections. Let Y 1; . . . ;Y n be
the squared radii of the cross-sectional circles. The problem is to estimate the distribution function F ðxÞ from
these observations. Under some reasonable assumptions, it can be seen (Stoyan et al., 1995) that the random
variables Y i are i.i.d.; denote their distribution function by GðyÞ. The relation between F and G is well-known:

1� GðyÞ ¼

Z 1
y

ffiffiffiffiffiffiffiffiffiffiffi
x� y
p

dF ðxÞ

Z 1
0

ffiffiffi
x
p

dF ðxÞ

� ��1
.

If F is a Lipschitz function, this equation can be solved

F ðxÞ ¼ 1�
Gð1=2ÞðxÞ

Gð1=2Þð0Þ
� 1�

gð�1=2ÞðxÞ

gð�1=2Þð0Þ
,

where g is the density of G. We refer the reader to the paper of Golubev and Levit (1998) for a derivation of
these formulas. Thus, in order to construct an estimator in the Wicksell problem we have to estimate the
fractional antiderivatives of the density g at zero and on Rþ. Obviously, the Wicksell problem does not
coincide with the problem of estimating the fractional antiderivative of the drift density in Gaussian white
noise model. However, they are related closely. Suppose that g belongs to a small neighborhood of the
uniform density on ½0; 1�. Then, on certain conditions, for e ¼ n�1=2 in (3) the corresponding statistical
experiments are asymptotically equivalent in the Le Cam sense (Nussbaum, 1996, p. 2409).

In this paper we construct an adaptive asymptotically minimax estimator of the vector vðyÞ under the
assumption that y belongs to the Sobolev class Yb with unknown smoothness b. In Section 2 we formulate the
main result and describe a method of estimation and adaptation. Section 3 contains some auxiliary lemmas.
The proof of the main result and concluding remarks can be found in Section 4.
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2. Adaptive estimation

We observe the data

X k ¼ yk þ exk; k ¼ 1; 2; . . . . (5)

We would like to construct an adaptive estimator of the unknown vector vðyÞ ¼ ðv1; v2; . . . Þ
T with components

vk ¼ yk=
ffiffiffi
k
p

from these observations with the only assumption vðyÞ 2 ‘2. Denote for brevity the vector
ðX 1;X 2; . . . Þ

T by X.
Let bvðX Þ ¼ ðbv1ðX Þ;bv2ðX Þ; . . . ÞT be an estimator of vðyÞ. Define the mean-square risk of bv:

EykbvðX Þ � vðyÞk2 ¼ Ey

X1
k¼1

jbvk � vkj
2,

where Ey is the expectation with respect to the measure corresponding to the distribution of X.
We will look for an adaptive estimator of vðyÞ in the class P of projection estimators:

P ¼ bvðW ;X Þ : bvkðW ;X Þ ¼ lkðW Þ
X kffiffiffi

k
p

� �
,

where

lkðW Þ ¼
1; kpW ;

0 otherwise:

�
The integer parameter W is called the bandwidth of the projection estimate. We denote the corresponding
projection estimator by bvðW Þ and its mean-square risk by ReðW ; yÞ. Our aim is to find the best projection
estimator of the vector y. It is easy to calculate the risk of bvðW Þ:

ReðW ; yÞ ¼ EykbvðW Þ � vðyÞk2 ¼ e2
XW
k¼1

1

k
þ

X1
k¼Wþ1

y2k
k
. (6)

The choice of the class of projection estimators for adaptation is suggested by the minimax approach. Let us
return for a moment to the problem where prior information is available. Suppose that y belongs to the
Sobolev ellipsoid Yb:X1

k¼1

a2
ky

2
kp1; a2

k ¼ ðpkÞ2b=P.

Taking into account this assumption, we can bound the risk (6) of the projection estimator bvðW Þ from above

ReðW ; yÞ ¼ e2
XW
k¼1

1

k
þ

X1
k¼Wþ1

y2k
k
pe2ðlogW þ gþ oð1ÞÞ þ

X1
k¼Wþ1

y2ka2
k �

1

ka2
k

pe2ðlogW þ gþ oð1ÞÞ þ sup
k4W

P

p2b
� k�2b�1

pe2ðlogW þ gþ oð1ÞÞ þ
P

p2b
W�2b�1.

Minimizing the last expression with respect to W we get

W �
b ¼

Pð2bþ 1Þ

p2be2

� �1=2bþ1

. (7)

Thus, an upper bound on the mean square risk is

sup
y2Yb

ReðW
�
b; yÞp

e2

2bþ 1
log

Pð2bþ 1Þ

e2p2b
þ e2 gþ

1

2bþ 1

� �
þ oðe2Þ.
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From Golubev and Enikeeva (2001) we have a lower bound on the risk and, consequently, the asymptotically
minimax risk of the second order in this case is

infbv sup
y2Yb

ReðW ; yÞ ¼
e2

2bþ 1
log

Pð2bþ 1Þ

e2p2b
þ e2 g�

2

2bþ 1

� �
þ oðe2Þ.

Thus, the projection estimator is asymptotically minimax on the Sobolev ellipsoid Yb. Our goal is to find an
adaptive minimax estimator in the class of projection estimators but with W data dependent.

An estimator bv of the vector vðyÞ is exactly adaptive in minimax sense on the family of classes Yb, b 2 B if

lim
e!0

supy2Yb
Eykbv� vðyÞk2

infev supy2Yb
Eykev� vðyÞk2

¼ 1 8b 2 B.

Let us return to the problem of adaptive choice of W. If y ¼ ðy1; y2; . . .Þ were known, then an optimal
bandwidth could be found as the minimizer of the functional ReðW ; yÞ:

Woracle ¼ argmin
W

ReðW ; yÞ.

Indeed, we cannot do better without knowing y. We will call a map y 7!bvðWoracleÞ an oracle and the value

ReðW
oracle; yÞ ¼ min

W
ReðW ; yÞ

the oracle risk. Hereafter, we will also call the bandwidth Woralce oracle. Of course, bvðWoracleÞ is not an
estimator because it depends on y that we cannot know. However, we attempt to construct an estimator which
will adapt to the oracle in the sense of imitating the oracle risk.

More precisely, an estimator bvðW Þ is called adaptive to the oracle Woracle on the set Y if there exists a
constant Co1 such that

ReðW ; yÞpCReðW
oracle; yÞ (8)

for all y 2 Y and 0oeo1.
An estimator bvðW Þ is exactly adaptive to the oracle Woracle on the set Y if for all y 2 Y we have

ReðW ; yÞpð1þ oð1ÞÞReðW
oracle; yÞ, (9)

where oð1Þ ! 0, as e! 0 uniformly in y 2 Y.
Inequalities of the type (8), (9) are called oracle inequalities.
We would like to find an optimal bandwidth bW such that the risk of the corresponding estimator Reð bW ; yÞ

converges to the risk of the oracle, as e! 0. The general method to find such an estimator is based on the idea
of unbiased risk estimation. This method goes back to the works of Mallows (1973) and Akaike (1973).

It is easy to see that X 2
k � e2 is an unbiased estimator of the parameter y2k:

EyðX
2
k � e2Þ ¼ y2k.

Thus, substituting y2k by this estimate in ReðW ; yÞ, we arrive at an unbiased estimate of the risk

ReðW ; yÞ ¼ e2
XW
k¼1

1

k
þ

X1
k¼Wþ1

y2k
k

¼ e2
XW
k¼1

1

k
þ kvðyÞk2 �

XW
k¼1

y2k
k
¼ 2e2

XW
k¼1

1

k
þ kvðyÞk2 � Ey

XW
k¼1

X 2
k

k
.

It follows that

ReðW ; yÞ � kvðyÞk2 ¼ 2e2
XW
k¼1

1

k
� Ey

XW
k¼1

X 2
k

k
¼ EyUðW ;X Þ,
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where

UðW ;X Þ ¼ 2e2
XW
k¼1

1

k
�
XW
k¼1

X 2
k

k
.

Therefore, UðW ;X Þ is unbiased estimator of the risk ReðW ; yÞ up to the constant kvðyÞk

ReðW ; yÞ � kvðyÞk2 ¼ EyUðW ;X Þ.

Now, to find an optimal W we minimize the functional UðW ;X Þ in WbW ¼ arg min
W2N

UðW ;X Þ. (10)

We arrive at

Theorem 1. Let bW be as in (10). For any a 2 ð0; 1Þ the following oracle inequality holds:

Reð bW ; yÞp
1

1� a
min
W2N

ReðW ; yÞ þ e2CðaÞ, (11)

for every vðyÞ 2 ‘2 and for

CðaÞ ¼
1

1� a

ffiffiffi
2

3

r
pþ

2

a

 !
.

We postpone the proof until Section 4.

Remark 1. It follows from the oracle inequality (11) that the estimator bvð bW Þ is exactly adaptive to the oracle
Woracle for all vðyÞ 2 ‘2.

Proof. Indeed, take a ¼ ðlog log e�2Þ�1. Then we have for any vðyÞ 2 ‘2

Reð bW ; yÞpð1þ ðlog log e�2Þ�1ÞRðWoracle; yÞ þ 2e2 log log e�2ð1þ oð1ÞÞ

pð1þ oð1ÞRðWoracle; yÞ; e! 0: &

Remark 2. The constructed adaptive to the oracle estimator bvð bW Þ is exactly adaptive in minimax sense on the
family of Sobolev ellipsoids fYb; b4 1

2g:

lim
e!0

supy2Yb
Eykbvð bW Þ � vðyÞk2

infev supy2Yb
Eykev� vðyÞk2

¼ 1; 8b4
1

2
.

Proof. Let b be fixed. From the oracle inequality it follows that

sup
y2Yb

Eykbvð bW Þ � vðyÞk2p
1

1� a
sup
y2Yb

EykbvðWoracleÞ � vðyÞk2 þ e2CðaÞ.

Then, for the optimal bandwidth W �
b from (7),

sup
y2Yb

EykbvðWoracleÞ � vðyÞk2p sup
y2Yb

EykbvðW �
bÞ � vðyÞk2

p
1

2bþ 1
e2 log e�2ð1þ oð1ÞÞ; e! 0.

Thus, for any ellipsoid Yb, and for a sequence a ¼ aðeÞ ¼ ðlog log e�2Þ�1, e! 0, we have

sup
y2Yb

Eykbvð bW Þ � vðyÞk2p
1

2bþ 1
e2 log e�2ð1þ oð1ÞÞ.



ARTICLE IN PRESS
F. Enikeeva / Statistics & Probability Letters 76 (2006) 1441–14481446
As it was mentioned before, the lower bound of the minimax risk for Sobolev ellipsoids has the same form (see
Golubev and Enikeeva, 2001):

infbv sup
y2Yb

Eykbv� vðyÞk2X
1

2bþ 1
e2 log e�2ð1þ oð1ÞÞ.

It follows that the estimator bvð bW Þ is asymptotically minimax efficient for any ellipsoid Yb:

lim
e!0

supy2Yb
Eykbvð bW Þ � vðyÞk2

infevsupy2Yb
Eykev� vðyÞk2

¼ 1; 8b4
1

2
.

This estimator is adaptive and does not depend on the smoothness parameter of the ellipsoid Yb. &

Oracle inequalities in minimax adaptive constructions appeared in the works of Golubev and Nussbaum
(see Golubev and Nussbaum, 1992 and references therein). We refer the reader to the paper of Kneip (1993)
for an extensive bibliography on data-driven choice of smoothing parameters. More recent references are
Donoho and Johnstone (1995), Birgé and Massart (2001), Cavalier et al. (2002), Tsybakov (2004) .
3. Auxiliary tools

To prove the main result we need two auxiliary lemmas.

Lemma 1. Let n be a positive integer random variable, xk be i.i.d. standard Gaussian random variables. Then

E
Xn
k¼1

x2k � 1

k
p

ffiffiffi
2

3

r
p. (12)

Proof. Let us note that

E
Xn
k¼1

x2k � 1

k
pEmax

m2N

Xm

k¼1

x2k � 1

k
¼ lim

N!1
E max

1pmpN

Xm

k¼1

x2k � 1

k

 !
. (13)

It is easy to see that the sequence j
Pm

k¼1x
2
k � 1=kj is a non-negative submartingale bounded inL2, thus we can

apply Doob’s Lp inequality (Williams, 1991, p. 143) taking p ¼ q ¼ 2:

E max
1pmpN

Xm

k¼1

x2k � 1

k

�����
�����
2

0@ 1A1=2

p2 E
Xm

k¼1

x2k � 1

k

�����
�����
2

0@ 1A1=2

.

Since xk are standard Gaussian, we have

E
XN

k¼1

x2k � 1

k

 !2

¼ E
XN

k¼1

ðx2k � 1Þ2

k2
¼ 2

XN

k¼1

1

k2
.

Therefore,

E max
1pmpN

Xm

k¼1

x2k � 1

k

�����
�����
2

p4
XN

k¼1

1

k2
.

Next, from the Jensen inequality we have

E max
1pmpN

Xm

k¼1

x2k � 1

k
p E max

1pmpN

Xm

k¼1

x2k � 1

k

 !2
0@ 1A1=2

p2
XN

k¼1

1

k2

 !1=2

.
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Applying this inequality to (13), we get

lim
N!1

E max
1pmpN

Xm

k¼1

x2k � 1

k

 !
p2

X1
k¼1

1

k2

 !1=2

¼

ffiffiffi
2

3

r
p.

Thus, the lemma follows. &

Lemma 2. Let n be a positive integer random variable, xk be i.i.d. standard Gaussian random variables, vðyÞ 2 ‘2,
and a 2 ð0; 1Þ. Then

Ey 2e
X1

k¼nþ1

ykxk

k
þ a e2

Xn
k¼1

1

k
þ
X1

k¼nþ1

y2k
k

 ! !
X�

2e2

a
. (14)

Proof. Note thatX1
k¼nþ1

ykxk

k
¼ w

X1
k¼nþ1

y2k
k2

 !
,

where wðtÞ is a standard Wiener process. Applying the following property of the Wiener process:

Emin
tX0

wðtÞ þ
mt

2

n o
X�

1

m

we can bound the left-hand side of (14) from above. Set t0 ¼
P1

k¼nþ1ðy
2
k=k2
Þ. Then

Ey 2e
X1

k¼nþ1

ykxk

k
þ a e2

Xn
k¼1

1

k
þ
X1

k¼nþ1

y2k
k

 !( )
XEf2ewðt0Þ þ at0g ¼ 2eE wðt0Þ þ

a
2e

t0

n o
X2eE min

tX0
wðtÞ þ

a
2e

t
n o

X�
2e2

a
: &

4. Proof of the main result

Now we can prove the main result.

Proof. It is easy to see that for any a 2 ð0; 1Þ

EyUð bW ;X Þ ¼ 2e2Ey

XbW
k¼1

1

k
� Ey

XbW
k¼1

y2k
k
� 2eEy

XbW
k¼1

ykxk

k
� e2Ey

XbW
k¼1

x2k
k

¼ ð1� aÞReð bW ; yÞ � kvðyÞk2

þ 2eEy

X1
bWþ1

ykxk

k
þ aEy e2

XbW
k¼1

1

k
þ

X1
k¼ bWþ1

y2k
k

0@ 1A� e2Ey

XbW
k¼1

x2k � 1

k
.

We can bound this equality from below using Lemmas 1 and 2:

EyUð bW ;X ÞXð1� aÞReð bW ; yÞ � kyk2 �
2e2

a
� e2

ffiffiffi
2

3

r
p. (15)

Therefore, taking into account that for any W

EyUð bW ;X ÞpEyUðW ;X Þ � ReðW ; yÞ � kyk2,
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we can rewrite (15) as

ReðW ; yÞXð1� aÞReð bW ; yÞ �
2e2

a
� e2

ffiffiffi
2

3

r
p,

and, consequently, for any W

Reð bW ; yÞp
1

1� a
ReðW ; yÞ þ

e2

1� a

ffiffiffi
2

3

r
pþ

2

a

 !
.

Thus, the theorem follows. &

Concluding remarks. We discussed the open question of adaptation in the Wicksell problem by considering a
similar problem of adaptation in estimating the fractional antiderivative of the signal g in the white noise

model. In the latter problem, we consider two cases: estimating the antiderivative gð�1=2Þ on Rþ and at 0. These

two cases are equivalent, correspondingly, to the problems of adaptive estimation of a vector vðyÞ ¼
ðy1=

ffiffiffi
1
p

; y2=
ffiffiffi
2
p

; . . .Þ and a linear functional LðyÞ ¼
P1

k¼1yk=
ffiffiffi
k
p

from the observations (1). In the present paper

we solved the first problem. In future work, we intend to treat the second case, using the method of adaptation
for linear functionals recently proposed by Golubev (2004).
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