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Abstract

This paper considers a problem of adaptation in estimating a fractional antiderivative of an unknown drift density from
observations in Gaussian white noise. This problem is closely related to the Wicksell problem. Under the assumption that
the drift density belongs to a Sobolev class with unknown smoothness, an adaptive estimator is constructed.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

We observe noisy data
Xk=0k+8§k? k=l929"'9 (l)

where &, are i.i.d. 47(0,1), and the parameter ¢>0 is assumed to be known. Our goal is to recover a vector
v(0) = (v1(0), v2(0), . . .), with components v,(0) = 0; /+/k, such that v(0) € ¢,.

The problem of estimating v(6) was recently considered by Golubev and Enikeeva (2001). There, it is
assumed that the vector 8 = (61, 6,,...) belongs to a certain ellipsoid ©:

0€@={0:Za,§0,§<1}, 2
k=1

with fixed coefficients {a;}. For example, if @ = @g(P) is a Sobolev ellipsoid with the smoothness parameter f8
and radius P, then a; = (nk)” /~/P. Under assumption (2), the authors follow the classical approach of Pinsker
(1980) to obtain an asymptotically minimax estimator of v(6). Unfortunately, a, the parameters of the
ellipsoid, often cannot be completely specified a priori. Moreover, the estimator in Golubev and Enikeeva,
2001 depends on an implicitly given smoothness parameter. Therefore, there arises the problem of adaptive
estimation. In adaptive estimation, one usually has a list of models, for example, a family of Sobolev ellipsoids
©Op(P) where P is fixed, the parameter f belongs to some set 4, but otherwise is unknown. It is then desirable
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to construct an estimator that depends only on the observations X, X», ... and is asymptotically minimax for
any @, f € #. Such an estimator is called an adaptive estimator.
To motivate our investigation, consider the stochastic differential equation

dx(¢) = g(t)dt + edw(z), t€[0,1], x(0)=0, 3)

where w(¢) is the standard Wiener process, ¢ >0 is a small parameter, and the drift density g(¢) is an unknown
periodic function. We can consider the observations (3) in the domain of their Fourier coefficients:

j}kz,ék—i—ggk’ k::tl,:l’:2,, (4)

where

_ 1 . 1
X, = /0 (D dx(D), O = /0 u(Dg(0)d1

and & = [} ¢(1)dw(r) are i.id. A°(0,1); {¢) is the trigonometric basis of L5(0, 1).
It is well-known that the derivative of order o« € R of the function g(¢) can be defined by the following
formula (Zygmund, 1968):

g2 = > Ocp()2miky”,

k=—00

and, consequently,

>0
124y = k. 27i) /2.
g2 k;w 77 o)
The derivative of negative order is called an antiderivative. Thus, the problem of estimating v(6) from the
observations (1) is similar to the problem of recovering the fractional antiderivative of order —% from the
observations (3).

The latter problem is, in turn, closely related to the Wicksell problem (Wicksell, 1925), formulated as
follows: a number of spheres are embedded in an opaque medium. Let their radii be i.i.d. with an unknown
distribution function F(x). Since the medium is opaque, we cannot observe the radii of spheres directly.
Instead, we intersect the medium by a plane and observe resulting circular cross-sections. Let Y,..., Y, be
the squared radii of the cross-sectional circles. The problem is to estimate the distribution function F(x) from
these observations. Under some reasonable assumptions, it can be seen (Stoyan et al., 1995) that the random
variables Y; are i.i.d.; denote their distribution function by G(y). The relation between F and G is well-known:

oo 00 —1
1—G(y)=/ Jx—de(x)(/ ﬁdF(x)) )
y 0
If F is a Lipschitz function, this equation can be solved

G(l/z)(x) g(_l/z)(x)
G172(0) VI,

where g is the density of G. We refer the reader to the paper of Golubev and Levit (1998) for a derivation of
these formulas. Thus, in order to construct an estimator in the Wicksell problem we have to estimate the
fractional antiderivatives of the density g at zero and on R*. Obviously, the Wicksell problem does not
coincide with the problem of estimating the fractional antiderivative of the drift density in Gaussian white
noise model. However, they are related closely. Suppose that g belongs to a small neighborhood of the
uniform density on [0, 1]. Then, on certain conditions, for ¢ = n~ /2 in (3) the corresponding statistical
experiments are asymptotically equivalent in the Le Cam sense (Nussbaum, 1996, p. 2409).

In this paper we construct an adaptive asymptotically minimax estimator of the vector v(f) under the
assumption that 0 belongs to the Sobolev class @ with unknown smoothness . In Section 2 we formulate the
main result and describe a method of estimation and adaptation. Section 3 contains some auxiliary lemmas.
The proof of the main result and concluding remarks can be found in Section 4.

Fx)y=1-
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2. Adaptive estimation

We observe the data
Xe=0r+e&, k=12,.... (%)
We would like to construct an adaptive estimator of the unknown vector v(0) = (v1, v, . ..)" with components
vk = 0 /v/k from these observations with the only assumption v(0) € £>. Denote for brevity the vector

(X1, X2,...)" by X.
Let 5(X) = (3,(X), 02(X),...)" be an estimator of v(). Define the mean-square risk of o:

o0
Ey[|[50X) — v(O)II* = Eg > [0r — vl
k=1

where Ey is the expectation with respect to the measure corresponding to the distribution of X.
We will look for an adaptive estimator of v(0) in the class £ of projection estimators:

P = {ﬁ(W,X) (W, X) = /lk(W)%},
where
J() = { b KSI
0 otherwise.

The integer parameter W is called the bandwidth of the projection estimate. We denote the corresponding
projection estimator by (W) and its mean-square risk by R,(W,6). Our aim is to find the best projection
estimator of the vector 6. It is easy to calculate the risk of v(W):

R(W,0) = Eg|[5(W) — v(0)|* = ZZ Z (6)

=1 k= W+1

The choice of the class of projection estimators for adaptation is suggested by the minimax approach. Let us
return for a moment to the problem where prior information is available. Suppose that 6 belongs to the
Sobolev ellipsoid @:

> a0i<l1, a; =@k’ /P.

Taking into account this assumption, we can bound the risk (6) of the projection estimator (W) from above

o]

2 00
1
—k Elog W +y+o()+ > 0,2(a,2(~p
aj

R.(W,0) = ¢ k
=W+ k= W+1

<&(log W+ 7y +o(1)) + sup 2ﬁ kT

P
<é&(log W+y+o(1))+TﬁW 21,

Minimizing the last expression with respect to W we get
. PQB+ 1) 1/26+1
Wi = 2be2 : 7
Thus, an upper bound on the mean square risk is

&? PR+ 1)
R.(W*,0)< 1 2
sup RV 0% pion U2 7+

2
W+ 1> + o(e).
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From Golubev and Enikeeva (2001) we have a lower bound on the risk and, consequently, the asymptotically
minimax risk of the second order in this case is
& PR2L+1)
inf sup R.(W,0) = lo 2y —
T oeoy (7. 9) W18 g T8 (’ 26 + 1
Thus, the projection estimator is asymptotically minimax on the Sobolev ellipsoid @g. Our goal is to find an
adaptive minimax estimator in the class of projection estimators but with W data dependent.
An estimator v of the vector v(0) is exactly adaptive in minimax sense on the family of classes Op, ff € A if

) + o(&?).

_ supyee, Eollo — ()]
lim

&0 inffgsupge@ﬁ EGHE_ 0(0)”

s=1 Ve

Let us return to the problem of adaptive choice of W. If 6 = (0,,0,,...) were known, then an optimal
bandwidth could be found as the minimizer of the functional R,(W, 0):

worde — arg mwi/n R, (W,0).

Indeed, we cannot do better without knowing 6. We will call a map 0 o( W °™) an oracle and the value

R,(W°"<, 0) = min R.(W, 0)

the oracle risk. Hereafter, we will also call the bandwidth W™ oracle. Of course, B(IW°%¥) is not an
estimator because it depends on 6 that we cannot know. However, we attempt to construct an estimator which
will adapt to the oracle in the sense of imitating the oracle risk.

More precisely, an estimator o(W) is called adaptive to the oracle W°™ on the set @ if there exists a
constant C <oo such that

Ry(W,0)< CR,(W°™, 0) ®)
for all 0 € ® and 0<e< 1.
An estimator B(W) is exactly adaptive to the oracle W% on the set @ if for all 0 € @ we have
Ry(W. 0)<(1 + o()R,(W°r, 0), ©)

where o(1) — 0, as ¢ — 0 uniformly in 6 € 6.

Inequalities of the type (8), (9) are called oracle inequalities. R

We would like to find an optimal bandwidth W such that the risk of the corresponding estimator R.(W, 6)
converges to the risk of the oracle, as ¢ — 0. The general method to find such an estimator is based on the idea
of unbiased risk estimation. This method goes back to the works of Mallows (1973) and Akaike (1973).

It is easy to see that X7 — ¢2 is an unbiased estimator of the parameter 07

Eo(X7 — &%) = 0;.
Thus, substituting 9,2( by this estimate in R.(W,0), we arrive at an unbiased estimate of the risk

k=W+1 k

2 - 1 2 - lec 2 - 1 2 - Xi
- Nk — 02N —E Y ZE
3t OF =3 =283 4 O > 5

It follows that

W
R(W.0)=2> 2+
k=1 k

Ll

R(W.0) = l0(O)* =22+ —Ey Yy “E=EUW, X),
k=1 k=1
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where

w
U(W,X):2SZZ ! ZXZ.

k=1 k=1
Therefore, U(W, X) is unbiased estimator of the risk R,(W,0) up to the constant |v(0)]|

R(W,0) — 00> = EgU(W, X).
Now, to find an optimal W we minimize the functional U(W, X) in W
W = arg min Uuw,X). (10)
We arrive at

Theorem 1. Let W be as in (10). For any o € (0,1) the following oracle inequality holds:
~ 1
R,(W,0)< ——min R(W,0) + & C(w), (11)
1 —aweN

for every v(0) € €, and for

1 2 2

We postpone the proof until Section 4.

Remark 1. It follows from the oracle inequality (11) that the estimator o( W) is exactly adaptive to the oracle
werae for all v(0) € £.

Proof. Indeed, take « = (log log ¢~2)~!. Then we have for any v(0) € £»
R.(W,0)<(1 + (log log &2~ )R(W°™_9) 4 2¢% log log & (1 + o(1))
<1 4+ o(HR(WOE g), & — 0. O

Remark 2. The constructed adaptive to the oracle estimator o( W) is exactly adaptive in minimax sense on the
family of Sobolev ellipsoids {@p, > %}:

_ supyee, BallE0V) — v(@)1* _ vps !
=0 infysupgeq, Eollv — v(0)]? 2

Proof. Let f§ be fixed. From the oracle inequality it follows that

sup Eo[[G(W) — v(0)]* < sup Eol[o(W°) — v(0)|1* + &2 C(a).

0c® B IS0 B

Then, for the optimal bandwidth Wﬁ from (7),

sup Eo[[6(W o) — v(0)|1* < sup Eol[5(W}) — v(0)|°
0eOy 0e0Oy

<
26+ 1

Thus, for any ellipsoid @g, and for a sequence o = a(¢) = (log log e 27! e — 0, we have

e loge (1 +o(1)), &— 0.

1
sup Eq[6() — v(0)I° <

& loge (1 + o(1)).
Sup B+l ge  ( (1))
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As it was mentioned before, the lower bound of the minimax risk for Sobolev ellipsoids has the same form (see
Golubev and Enikeeva, 2001):

1

inf sup Egllo — v(0)[I* > e loge (1 + o(1)).

> 06y 26+1
It follows that the estimator o( W) is asymptotically minimax efficient for any ellipsoid ©:
su Eyl[5(W) — v(0)|12 1
i SPrze BAEOD) 0O 1
=0 infsupgeg,Eollv — v(0)] 2

This estimator is adaptive and does not depend on the smoothness parameter of the ellipsoid @5. [

Oracle inequalities in minimax adaptive constructions appeared in the works of Golubev and Nussbaum
(see Golubev and Nussbaum, 1992 and references therein). We refer the reader to the paper of Kneip (1993)
for an extensive bibliography on data-driven choice of smoothing parameters. More recent references are
Donoho and Johnstone (1995), Birgé and Massart (2001), Cavalier et al. (2002), Tsybakov (2004) .

3. Auxiliary tools

To prove the main result we need two auxiliary lemmas.

Lemma 1. Let v be a positive integer random variable, &, be i.i.d. standard Gaussian random variables. Then
N S )
E ; <5 (12)
Proof. Let us note that
L8 I N m 2
< = .
B = <PBmax) “g—=Jim Bl max D =g 13

It is easy to see that the sequence |> ;. éi — 1/k| is a non-negative submartingale bounded in ., thus we can
apply Doob’s ., inequality (Williams, 1991, p. 143) taking p = ¢ = 2:

, N 172 R N 172
E max f:ék;l <2 Eiék_l
1<m<N k = k
k=1 k=1
Since ¢, are standard Gaussian, we have
N 2 2 N 2 2 N
i—1 =1 1
Therefore,
2
E max 2"1:512(_1 <42N:l
1<m<N = k = = k2 ’
Next, from the Jensen inequality we have
1/2

m g2 1

: n 2| 2 N 1/2
k™~ < k < _
E 1I<I}7%N Z ko E llgnn?gN (; k ) \2<Z k2> )
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Applying this inequality to (13), we get

1/2
, mE ] < \F
< — N
1\}1—r>1;1)oE<lgl1agN](=1 k <2 ;kz 3"

Thus, the lemma follows. [

1447

Lemma 2. Let v be a positive integer random variable, &, be i.i.d. standard Gaussian random variables, v(0) € €,
and o € (0,1). Then

SRR

1 k=v+1
Proof. Note that

N Oy < - 9;%)
—=w =1,
k=v+1 k k;—l k2

where w(?) is a standard Wiener process. Applying the following property of the Wiener process
t 1
Emin{w(t) + '[i} = ——
>0 2 u

(14)

we can bound the left-hand side of (14) from above. Set tp = >, Hr](9,(/k2) Then

CPE SRS ]

1 k=v+1
>E{2ew(ty) + aty} = ZSE{W(fo) + fIO}

e 2
> — > - —
2¢E mlg{w(t) + 2% l} ot O

4. Proof of the main result

Now we can prove the main result

Proof. It is easy to see that for any o € (0, 1)

<)

2 V/I; i ﬁ\/ kak
EgU(WX)_ZsEng Z__ »
k=1 k=1

k=1
= (1 — )R, 0) — (O]
+2EZ kEk+ocE 82§l+ i 0—12‘ s iii_l
k ’ k=1 k =~k Hk—l ko
Wl = k=W+1 =

We can bound this equality from below using Lemmas 1 and 2

E U(W, X)=(1 — )R, (W, 0) — [0 i &V%.

(15)
Therefore, taking into account that for any W
Ey UV, X)<E U(W,X) = R(W.0) — [|0].
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we can rewrite (15) as

~ 282, 2
R.(W,0)=(1 —oc)RS(W,O)—Y—e gn,
and, consequently, for any W

~ 1 2 D) o)
R(W,0)< —— R(W,0) + —— \ﬂn+_
1 l—a 3 o

—a
Thus, the theorem follows. [

Concluding remarks. We discussed the open question of adaptation in the Wicksell problem by considering a
similar problem of adaptation in estimating the fractional antiderivative of the signal g in the white noise

model. In the latter problem, we consider two cases: estimating the antiderivative ¢~'/? on R* and at 0. These
two cases are equivalent, correspondingly, to the problems of adaptive estimation of a vector v(6) =

(0,/+/1,0,/+/2,...) and a linear functional L(0) = Z/Zﬁk/‘/% from the observations (1). In the present paper
we solved the first problem. In future work, we intend to treat the second case, using the method of adaptation
for linear functionals recently proposed by Golubev (2004).
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