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Abstract—In the context of adaptive nonparametric curve estimation a common assumption is
that a function (signal) to estimate belongs to a nested family of functional classes. These classes
are often parametrized by a quantity representing the smoothness of the signal. It has already
been realized by many that the problem of estimating the smoothness is not sensible. What can
then be inferred about the smoothness? The paper attempts to answer this question. We consider
implications of our results to hypothesis testing about the smoothness and smoothness classification
problem. The test statistic is based on the empirical Bayes approach, i.e., it is the marginalized
maximum likelihood estimator of the smoothness parameter for an appropriate prior distribution
on the unknown signal.
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1. INTRODUCTION

Suppose we observe Gaussian data X = X(n) = (Xi)i∈N, where Xi ∼ N (θi, n
−1), the Xi’s are

independent, θ = (θi)i∈N ∈ R
N is an unknown parameter. This model is the sequential version of the

Gaussian white noise model dY (t) = f(t) dt + n−1/2 dW (t), t ∈ [0, 1], where f ∈ L2[0, 1] = L2 is an
unknown signal and W is the standard Brownian motion. If θ ∈ �2 = {θ :

∑∞
k=1 θ2

k < ∞}, the infinite-
dimensional parameter θ can be regarded as a sequence of the Fourier coefficients of f ∈ L2 with respect
to some orthonormal basis in L2. Sometimes we will call θ a signal. We assume that θ ∈ Θ ⊆ �2,
where Θ = ∪β∈BΘβ and β ∈ B has the meaning of smoothness parameter. Here we consider only one-
dimensional β ∈ B ⊆ R+ = [0,+∞) and a family of Sobolev type sets {Θβ}β∈B: Θβ2 ⊆ Θβ1 if β1 ≤ β2.
Our goal is to make an inference on the smoothness of the parameter θ. More precisely, we are going to
test the hypothesis about the smoothness of θ.

The white noise model attracted attention in the last few decades. Its comprehensive treatments
can be found in [19] and [22]. Besides being of interest in its own (the problem of recovering a signal
transmitted over a communication channel with Gaussian white noise of intensity n−1/2), the white
noise model turns out to be a mathematical idealization of some other nonparametric models. For
instance, the white noise model arises as a limiting experiment as n → ∞, for the model of n i.i.d.
observations with unknown density and for the regression model (see [29] and [6]). On the other hand,
this model captures the statistical essence of the original model and preserves its main features in a
pure form; cf. [22]. Most of the statistical problems are studied in asymptotic setup from the viewpoint
of increasing information n → ∞. In fact, one deals with a sequence of models parametrized by n.
Though non-asymptotic estimation problems are also very important, they are often not tractable
mathematically. Besides, very often, non-asymptotic results become interesting and useful only for a
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sufficiently large value of the information parameter n, i.e., they are essentially of asymptotic nature. Our
approach is also primarily asymptotic. However, the intention is to derive non-asymptotic results as well
(where at all feasible), to be able to evaluate precisely the influence of different quantities and constants
on the quality of the inference. To simplify the notation in this paper, we omit sometimes the dependence
of relevant quantities on n.

Many statistical problems for the white noise model have been already studied in the literature: signal
estimation under different norms, estimation of a functional of the signal, hypothesis testing about the
signal, construction of confidence sets. We name just a few references: [19], [31], [20], [14], [3], [18],
[22] (see references therein), [23], [30], [5], [8], [24], [21] (see references therein), [33] (see references
therein). To compare different statistical inference procedures, one can use the minimax approach,
oracle inequalities, maxisets. A typical approach to the problems mentioned above is to assume that
the unknown signal θ belongs to some set Θβ ⊂ �2 indexed by β ∈ B, which represents the smoothness.
If the parameter β is known, then we are in a single model situation and we can use this knowledge
in making inference about θ; for instance, signal estimation, functional estimation, testing hypothesis,
confidence set. If the parameter β is unknown (multiple model situation: θ ∈ ∪β∈BΘβ), an adaptation
problem arises.

In the last two decades, several adaptation methods (primarily for the estimation problem) have been
developed, to name a few: blockwise method (see, e.g., [15], [8], [7]), Lepski’s method [25], [26], [27], [28],
wavelet thresholding ([13], later developed in many other papers), penalization method ([1] and further
references therein, [23], [5]), Bayesian methods ([2], [4], [17]). Some methods are designed for rather
specific settings: e.g., blockwise method for the white noise sequence model with the mean squared risk.
Some of them are more general, e.g., Lepski’s method, which could be extended to different settings
(various risk functions, multidimensional case) and even to different statistical problems: estimation of
a functional of a signal, the problem of adaptive hypothesis testing.

One of the ingredients of some adaptation methods mentioned above (as Bayesian methods, Lepski’s
method, and the method of penalized estimators) is the problem of data-based choice β̂ = β̂(X(n))
for the structural parameter β ∈ B which marks the smoothness. One can thus regard this attendant
problem as the smoothness selection problem (or the model selection problem). Typically, in a single
model situation a standard (optimal in some sense) inference procedure on θ is available, i.e., in fact one
has a family of nonadaptive inference procedures parametrized by β ∈ B at one’s disposal. Then a good
smoothness selection method combined with this family of procedures should lead to a good adaptive
inference procedure simply by choosing the inference procedure with the selected smoothness. Ideally,
we would like our adaptive inference procedure to be of the same quality as if we knew the true β ∈ B
for which θ ∈ Θβ, or, if this is impossible, with the smallest possible loss of quality. Actually, even if we
know that θ ∈ Θβ1 for some β1 ∈ B and there is an optimal (in some sense) inference procedure available
for this situation, it may still be more advantageous to use an adaptive procedure instead. Indeed, a good
smoothness selection method may pick some other β2 
= β1 which may lead to a better quality simply
because the underlying θ may also satisfy θ ∈ Θβ2 . Even if θ 
∈ Θβ2 , it still may be “very close” to Θβ2 ,
so that the quality of the procedure corresponding to β2 is better.

It is a folklore belief that it is impossible “to estimate the smoothness”. We, however, deliberately
avoid words “estimation of the smoothness” and use the term “smoothness selection” instead. The
point is that the problem of selecting the smoothness, on its own, does not really make sense, since
it is not quite clear how to characterize the amount of smoothness that a particular signal has (in other
words, which β ∈ B is the most appropriate to a certain θ) and how to compare different smoothness
selection methods if we do not specify for what purpose we need to select the smoothness parameter
β ∈ B. Thus, the problem of smoothness selection is only sensible in connection with the underlying
statistical problem.

In this paper we are trying to test the hypothesis that the parameter θ belongs to some set Θβ0 , where
the value β0 ∈ B is known. Loosely speaking, this corresponds to testing the hypothesis β̄(θ) ≥ β0

against β̄(θ) < β0, where β̄(θ) has the meaning of smoothness of signal θ. We use a version of the
empirical Bayes approach which is due to Robbins [32]. We fix the family of Bayes estimators θ̂(β) =
θ̂(β,X) with respect to the priors πβ , β ∈ B, chosen in such a way that the Bayes estimator θ̂(β) is
rate minimax over the Sobolev ball of smoothness β in the problem of estimating the signal θ in �2-
norm. In the next section we propose some heuristic guiding idea how to check whether a certain prior
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πβ adequately reflects the requirement θ ∈ Θβ . Next, we propose a smoothness selection procedure
β̂ = β̂(X) based on maximizing the restricted marginal likelihood (a version of the empirical Bayes
approach). Our main goals in this paper are to study the asymptotic properties of this smoothness
selection method. Namely, we look at these properties from the point of view of hypothesis testing about
the smoothness of the signal and discuss some applications to the smoothness classification problem.

The paper is organized as follows. Section 2 describes the empirical Bayes approach. The main results
are given in Section 3. We prove auxiliary lemmas in Section 4.

2. EMPIRICAL BAYES APPROACH

Let
{
Θβ

}
β∈B, B = [κ,+∞) for some κ > 0, be a family of Sobolev type subspaces of �2:

Θβ =
{

θ :
∞∑

i=1

i2βθ2
i < ∞

}

.

Many quantities will depend on this constant κ, but we will skip this dependence throughout the paper
to make the notation easier. We suppose that θ ∈ Θβ for some unknown β ∈ B.

For a particular θ ∈ ∪β∈BΘβ define the function

Aθ(β) =
∞∑

i=1

i2βθ2
i , β ∈ B. (1)

It is a monotone function of β. Note that θ ∈ Θβ if and only if Aθ(β) < ∞. Throughout the paper
we assume that there exists β̄ ∈ B such that β̄ = β̄(θ) = sup{β ∈ B : Aθ(β) < ∞}. We can interpret
β̄ = β̄(θ) as the smoothness of θ. Two possibilities may occur: either Aθ(β) → ∞ as β ↑ β̄ or Aθ(β̄) <
∞ and Aθ(β) = ∞ for all β > β̄. It is the behavior of the function Aθ(β) that effectively measures
the smoothness of the underlying signal θ. Unless otherwise specified, we assume from now on that
Aθ(β̄) = ∞.

The goal of this paper is to make an inference about the smoothness of the signal on the basis of
the observed data X. The inference will be based on a statistic β̂(X) (it has an intuitive meaning of the
smoothness selector), which we construct using the empirical Bayes approach. In the next section we
will make this problem mathematically formal by evaluating so-called probabilities of undersmoothing
and oversmoothing for this statistic. In the rest of this section we describe the construction of β̂(X). The
idea of the approach is to put a “right” prior π(β) on the parameter θ, find the marginal distribution of X,
which will depend on β, and then use the marginal maximum likelihood estimator of β as the smoothness
selection procedure.

We need to clarify the choice of the right family of priors π(β), β ∈ B. As is well illustrated in a
series of papers by Diaconis and Freedman (see [9], [10], [11], [12] and [16]), an arbitrary choice of the
prior may lead to Bayesian procedures that easily fail in infinite-dimensional problems. An appropriate
prior should reflect adequately the smoothness assumption on the unknown signal. There are many
ways to describe this. Here we propose the following guiding principle, which adapts to the inference
problem on θ. For example, the inference problems can be estimation of θ, estimation of a functional
of θ, testing hypotheses, constructing confidence set. Usually these problems come with their own
performance criteria, like the rate of convergence for the estimation problem. A particular prior leads
to the corresponding Bayes procedure. We can look at its performance, according to the given criteria,

from the two different perspectives: frequentists (X(n) ∼ P
(n)
θ ) and Bayesian (X(n) ∼ P

(n)
β , marginal of

X(n)). Thus, a prior is considered to be not unreasonable (and potentially right) if it provides the same
high performance, with respect to the given criteria, of the resulting Bayes procedure simultaneously
under both Bayesian and frequentists formulations. For instance, in the case of an estimation problem,
Bayesian estimator should be a minimax estimator, at least with respect to the convergence rate.

This principle should not be taken as a precise prescription, but rather as a starting point in the choice
of “correct” priors in infinite-dimensional statistical problems. After all, one will have to investigate the
performance of the resulting Bayesian procedure in each particular statistical problem in order to claim
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that a certain prior is right for that problem. The choice of the prior surely depends on the underlying
inference problem on θ, which is in our case the problem of signal estimation in �2-norm. Thus, in
this paper we consider the following version of the above principle: we take the underlying inference
problem on θ to be the problem of estimating θ in �2-norm. Next, we should choose a prior leading to
a Bayes estimator that is at least rate optimal in the minimax sense over the corresponding class with
smoothness β. The minimax �2-rate over the Sobolev ellipsoid of smoothness β is n−2β/(2β+1) (see [31])
and the Bayes risk of our estimator should attain the same convergence rate. We put the following prior
π = π(β) on θ: the θi’s are independent and for δ > 1 − 2β

θi ∼ N (0, τ2
i (β)), τ2

i (β) = τ2
i (β, δ, n) = n

δ−1
2β+1 i−(2β+δ), i ∈ N. (2)

Recall the following simple fact: if Z | Y ∼ N (Y, σ2) and Y ∼ N (μ, τ2), then

Y | Z ∼ N
(

Zτ2 + μσ2

τ2 + σ2
,

τ2σ2

τ2 + σ2

)

.

Let Eπ denote the expectation with respect to the prior π. The Bayesian estimator of θ based on the
above prior is the vector θ̂ = θ̂(β) = (θ̂i)i∈N with components

θ̂i = θ̂i(β) = E(θi | Xi) =
τ2
i (β)Xi

τ2
i (β) + n−1

, i ∈ N. (3)

The choice of the prior and the variance (2) is made according to our principle as the following lemma
shows.

For 0 < p < ∞, 0 < q < ∞, 0 ≤ r < ∞ such that pq > r + 1 denote

B(p, q, r) =

∞∫

0

ur

(1 + up)q
du = p−1 Beta

(

q − r + 1
p

,
r + 1

p

)

, (4)

where, for α, β > 0, Beta(α, β) =
∫ 1
0 uα−1(1 − u)β−1 du is the Beta function.

Lemma 1. Let θ̂ be defined by (3). Then, as n → ∞,

Eπ‖θ − θ̂‖2 = n−2β/(2β+1)B(2β + δ, 1, 0)(1 + o(1)),

Eθ‖θ − θ̂‖2 ≤ n−2β/(2β+1)
(
Aθ(β)C(β, δ) + B(2β + δ, 2, 0)

)
(1 + o(1)),

Eθ‖θ − θ̂‖2 ≥ B(2β + δ, 2, 0)n−2β/(2β+1)(1 + o(1)),

where C(β, δ) = (1+δβ−1)2(β+δ)/(2β+δ)

(2+δβ−1)2
and the function B is defined by (4).

Proof. By (2) and Lemma 9, we evaluate the Bayes risk:

Eπ‖θ − θ̂‖2 =
∞∑

i=1

τ2
i (β)n−1

τ2
i (β) + n−1

=
∞∑

i=1

n(δ−1)/(2β+1)

n(2β+δ)/(2β+1) + i2β+δ

= n−2β/(2β+1)B(2β + δ, 1, 0)(1 + o(1))

as n → ∞. The frequentist risk consists of two terms

Eθ‖θ − θ̂‖2 = Eθ

∞∑

i=1

(
τ2
i (β)Xi

τ2
i (β) + n−1

− θi

)2

=
∞∑

i=1

n−2θ2
i

(τ2
i (β) + n−1)2

+
∞∑

i=1

n−1τ4
i (β)

(τ2
i (β) + n−1)2

.
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Using again (2) and Lemma 9, we bound these terms as follows: as n → ∞,
∞∑

i=1

n−2θ2
i

(τ2
i (β) + n−1)2

=
∞∑

i=1

i2(2β+δ)θ2
i

(n(2β+δ)/(2β+1) + i2β+δ)2

≤ Aθ(β)max
i∈N

i2β+2δ

(
n(2β+δ)/(2β+1) + i2β+δ

)2

= Aθ(β)C(β, δ)n−2β/(2β+1)(1 + o(1)),
∞∑

i=1

n−1τ4
i (β)

(τ2
i (β) + n−1)2

=
∞∑

i=1

n(2β+2δ−1)/(2β+1)

(
n(2β+δ)/(2β+1) + i2β+δ

)2

= n−2β/(2β+1)B(2β + δ, 2, 0)(1 + o(1)).

The lemma is proved.

Below we present another lemma, which justifies in a way the choice of the variance of the prior
distribution. This lemma says that if θ belongs to Θβ , then the estimator θ̂ belongs to the same set with
probability one.

Lemma 2. Let θ ∈ Θβ for some β ∈ B. Then

lim
T→∞

sup
n≥1

Pθ

{ ∞∑

i=1

θ̂2
i i

2β > T

}

= 0.

Proof. By the Markov inequality,

Pθ

{ ∞∑

i=1

θ̂2
i i

2β > T

}

≤ T−1
∞∑

i=1

i2βEθ[θ̂2
i ].

Note that

Eθ[θ̂2
i ] =

τ4
i (β)EθX

2
i

(τ2
i (β) + n−1)2

=
n2(2β+δ)/(2β+1)(θ2

i + n−1)
(n(2β+δ)/(2β+1) + i2β+δ)2

.

Applying Lemma 9 (see also the remark following that lemma), we evaluate

Pθ

{ ∞∑

i=1

i2β θ̂2
i > T

}

≤ n2(2β+δ)/(2β+1)

T

∞∑

i=1

i2β(θ2
i + n−1)

(n(2β+δ)/(2β+1) + i2β+δ)2

≤ Aθ(β)
T

+
n2(2β+δ)/(2β+1)−1

T

∞∑

i=1

i2β

(n(2β+δ)/(2β+1) + i2β+δ)2

≤ Aθ(β)
T

+
B(2β + δ, 2, 2β) + 1

T
,

which completes the proof of the lemma.

Recall that we have the following marginal distribution of X: Xi’s are independent and Xi ∼
N

(
0, τ2

i (β) + n−1
)
, i ∈ N. Let Ln(β) = Ln(β,X) be the marginal likelihood of the data X = (Xi)i∈N:

Ln(β) =
∞∏

i=1

1
√

2π
(
τ2
i (β) + n−1

) exp
{

− X2
i

2
(
τ2
i (β) + n−1

)

}

.

Maximizing the function Ln(β) is equivalent to minimizing − log Ln(β). To avoid complications in
defining the minimum of − log Ln(β) under the event {− log Ln(β) = ∞}, it is convenient to introduce
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Zn(β) = Zn(β, β0) = −2 log Ln(β)
Ln(β0) (which is almost surely finite) for some reference value β0 ∈ B. For

any set S ⊆ B, define a marginal likelihood estimator of β restricted to the set S:

β̂ = β̂(S) = β̂(S,X, n) = arg min
β∈S

Zn(β), (5)

which is a version of empirical Bayes approach (see [32]). This means that Zn(β̂(S)) ≤ Zn(β) for all
β ∈ S or, equivalently,

∞∑

i=1

(
τ2
i (β0) − τ2

i (β̂(S))
)
X2

i

(τ2
i (β0) + n−1)(τ2

i (β̂(S)) + n−1)
+

∞∑

i=1

log
τ2
i (β̂(S)) + n−1

τ2
i (β0) + n−1

≤
∞∑

i=1

(
τ2
i (β0) − τ2

i (β)
)
X2

i

(τ2
i (β0) + n−1)(τ2

i (β) + n−1)
+

∞∑

i=1

log
τ2
i (β) + n−1

τ2
i (β0) + n−1

for all β ∈ S. It follows also that Zn(β̂(S), β) ≤ 0 for all β ∈ S.
Denote for brevity

ai = ai(β, β0) =
1

τ2
i (β) + n−1

− 1
τ2
i (β0) + n−1

, (6)

bi = bi(β, β0) =
τ2
i (β) + n−1

τ2
i (β0) + n−1

= 1 +
τ2
i (β) − τ2

i (β0)
τ2
i (β0) + n−1

. (7)

Then Zn(β, β0) =
∑∞

i=1 ai(β, β0)X2
i +

∑∞
i=1 log bi(β, β0), and for all β ∈ S

∞∑

i=1

ai(β̂(S), β)X2
i ≤

∞∑

i=1

log
[
bi(β̂(S), β)

]−1
. (8)

Remark 1. It is not so difficult to check that the above β̂ can be related to a penalized least square
estimator with the penalty pen(θ, β) =

∑∞
i=1

[
θ2
i τ

−2
i (β) + log

(
τ2
i (β) + n−1

)]
. Indeed,

β̂(S) = arg min
β∈S

Zn(β) = arg min
β∈S

min
θ

{

n
∞∑

i=1

(Xi − θi)2 + pen(θ, β)
}

.

Remark 2. In fact, we could assume κ = κn ↓ 0 as n → ∞ sufficiently slowly, so that all the results still
hold true.

Remark 3. From now on we will assume the set S = Sn to be finite, the exact assumptions are given
in the next section. We have chosen to minimize the process Zn(β) over some finite set S = Sn to avoid
unnecessary technical complications. Indeed, we could also take S to be the whole set B and then study
the behavior of a (near) minimum point of Zn(β). The usual technique in such cases inspired by the
empirical processes theory is to consider the minimum over some finite grid in B and to make sure at the
same time that the increments of the process Zn(β) are uniformly small over small intervals (provided
the process is smooth enough). We do not pursue this approach simply because it boils down to the
same considerations as in the case when we restrict the minimization to the finite set Sn from the very
beginning.

3. MAIN RESULTS
First introduce some notation. For a constant Q > 0 denote by Θβ(θ̄, Q) ⊆ �2 the Sobolev ellipsoid of

“size” Q and smoothness β around the point θ̄ ∈ �2: Θβ(θ̄, Q) = {θ : Aθ−θ̄(β) =
∑∞

i=1 i2β(θi − θ̄i)2 ≤
Q}. Denote further Θβ(Q) = Θβ(0, Q). For a set B, denote by |B| the cardinality of B, which may
be infinite. For a nonempty set B ⊆ R, define �x�B = sup{y ∈ B : y ≤ x} if inf{B} < x, and �x�B =
inf{B} otherwise; �x�B = inf{y ∈ B : y ≥ x} if sup{B} > x, and �x�B = sup{B} otherwise. Note that
if B is finite, then �x�B , �x�B ∈ B. Denote �x� = �x�Z. Define the sets S−

n (β) = S−
n (β, Sn) = {β′ ∈

Sn : β′ ≤ β} and S+
n (β) = S+

n (β, Sn) = {β′ ∈ Sn : β′ ≥ β}.
From now on we make the following assumptions.
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(i) We set δ = 1 in definition (2) of the prior variances τ2
i , unless otherwise is specified.

(ii) The set S is assumed to be finite, dependent on n in such a way that S = Sn forms an εn-net in
[κ, sup{Sn}], with εn = O

(
1/(log n)

)
and sup{Sn} → ∞ as n → ∞.

The requirement εn = O
(
1/(log n)

)
stems from the fact that if |β1 − β2| = O

(
1/(log n)

)
as n →

∞, then n2β1/(2β1+1) = O
(
n2β2/(2β2+1)

)
and n2β2/(2β2+1) = O

(
n2β1/(2β1+1)

)
. Later we will impose a

certain upper bound on |Sn|. There are many possible choices of the set Sn: for example, the choice
εn = (log n)n−1 and Sn = {κ + kεn, k = 0, 1, . . . , n} will do.

Recall that we observe independent Gaussian data Xi ∼ N (θi, n
−1), i = 1, 2 . . . , with unknown

θ = (θi)∞i=1. Informally, we would like now to test the hypothesis H0: the smoothness of the signal θ
is at least β0. The alternative H1: the smoothness of the signal θ is less than β0. Although intuitively
appealing, this is not a proper hypothesis testing problem yet. It should be of the form H0 : P ∈ P0

against H1 : P ∈ P1; a family of probability measures P0 against another family of probability measures

P1. In our case X ∼ Pθ = P
(n)
θ and we can formalize H0 as follows: H0 : Pθ, θ ∈ Θβ0 or H0 : Pθ, θ ∈

{θ : β̄(θ) > β0}. It would be ideal to test this hypothesis against the alternative H1 : θ ∈ �2 \ Θβ0 or
H1 : Pθ, θ ∈ {θ : β̄(θ) ≤ β0}. However, for a test to be consistent against all the above alternatives, this
set of alternatives is too large and some of the alternatives are “too close” to the null hypothesis set. A
typical approach in such a situation is to restrict the set of alternatives (see [21]). This actually means
that we remove a sort of indifference zone from the complement of the set Θβ0 .

Let us introduce a restricted set of alternatives. Define, for some nonnegative sequence Δn,

Vθ = Vθ(Δn) = Vθ(Δn, n)

=
{

β ∈ Sn : ∃β′ = β′(β) ∈ Sn, β′ ≤ β,
1
2

∞∑

i=1

ai(β, β′)(θ2
i − τ2

i (β′))
1 + n−1ai(β, β′)

≥ Δn

}

and

Λβ = Λβ(Δn) = Λβ(Δn, n) = {θ ∈ �2 : Sn ∩ [β,∞) ⊆ Vθ(Δn)},
where ai are defined in (6).

Next, introduce the decision rule

ψ = ψn(X,β) = 1{β̂(X) ≤ β},

where β̂(X) is the marginal maximum likelihood smoothness selector (5).
We use the decision rule ψn(X,β0 − δn), with an appropriately chosen sequence δn, δn → 0, to test

the hypothesis

H0 : θ ∈ Θβ0 against H1 : θ ∈ Λβ0−δn .

Thus, the set Λβ0−δn(Δn, n) is the set of alternatives in our testing problem and the probabilities of type I
and II errors for the test ψn(X,β0 − δn) are

α1(θ, β0 − δn, n) = Eθψn(X,β0 − δn) = Pθ{β̂ ≤ β0 − δn}, θ ∈ Θβ0,

α2(θ, β0 − δn, n) = Eθ(1 − ψn(X,β0 − δn)) = Pθ{β̂ > β0 − δn}, θ ∈ Λβ0−δn ,

respectively.

Theorem 1. Let β0 ∈ B, Q > 0, δn = δn(c) = c
log n .

1. For any C > 0 there exists a positive C0 = C0(β0, Q,C) such that for all c ≥ C0

sup
θ∈Θβ0

(Q)
α1(θ, β0 − δn, n) = sup

θ∈Θβ0
(Q)

Pθ{β̂ ≤ β0 − δn} ≤ |S−
n (β0 − δn)| exp

{
− Cn1/(2β0+1)

}
.

2. For any β ∈ B (in particular, for β = β0 − δn)

sup
θ∈Λβ(Δn)

α2(θ, β, n) = sup
θ∈Λβ(Δn)

Pθ{β̂ > β} ≤ |S+
n (β)| exp

{
−Δn

}
.
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Proof. Recall that εn = O
(
1/(log n)

)
as n → ∞. Therefore, if β ≤ β0 − c

log n with c ≥ C0 and C0 =

C0(β0, Q,C) large enough, then there exists β′
0 ∈ Sn such that β ≤ β′

0 − C2
log n ≤ β0 − C1+C2

log n for con-
stant C1 = C1(β0, Q) from Lemma 7 and positive C2 = C2(β0, C) to be specified later. This holds, for
example, for C0 = 3max{C1, C2, εn log n}.

Since β ≤ β′
0 ≤ β0 − C1

log n , by Lemma 7 we obtain that for all n ∈ N

sup
θ∈Θβ0

(Q)
Pθ{β̂(Sn) ≤ β0 − δn} ≤

∑

β∈S−
n (β0−δn)

sup
θ∈Θβ0

(Q)
Pθ{β̂ = β}

≤ |S−
n (β0 − δn)| exp

{
B(1, 2, 0)n1/(2β′

0+1)

2
+

5
8
− n1/(β+β′

0+1)

16

}

.

Denote for brevity δ′n = C2
log n and B = B(1, 2, 0), where the function B is defined by (4). As β ≤ β′

0 − δ′n,
the expression in the exponent of the last relation can be bounded as follows:

B(1, 2, 0)n1/(2β′
0+1)

2
+

5
8
− n1/(β+β′

0+1)

16
=

B

2
n1/(2β′

0+1) +
5
8
− n1/(2β′

0+1−δ′n)

16

=
(

B

2
+

5
8
n−1/(2β′

0+1) − 1
16

n
δ′n

(2β′
0+1−δn)(2β′

0+1)

)

n1/(2β′
0+1) ≤

(
B

2
+

5
8
− nδ′n/(2β′

0+1)2

16

)

n1/(2β′
0+1)

=
(

B

2
+

5
8
− 1

16
exp

{
C2

(2β′
0 + 1)2

})

n1/(2β′
0+1) = −Cn1/(2β′

0+1) ≤ −Cn1/(2β0+1)

with C2 = (2β0 + 1)2 log(16(B
2 + 5

8 + C)). The first assertion of the theorem follows for

C0 = 3max{C1, C2, εn log n}.

The second assertion of the theorem follows immediately from the definition of the set Λn(β) and
Lemma 6. Indeed,

Pθ{β̂(Sn) > β} ≤
∑

β∈S+
n (β)

Pθ{β̂ = β}

≤ |S+
n (β)| exp

{
1
2

∞∑

i=1

ai(β, β′)
(
τ2
i (β′) − θ2

i

)

1 + n−1ai(β, β′)

}

≤ |S+
n (β)| exp{−Δn}.

Remark 4. Of course, according to the second assertion of the above theorem, we can make the
set of alternatives Λβ(Δn) larger by taking a larger β > β0 − δn, for instance, for Λβ0(Δn) instead of
Λβ0−δn(Δn). The problem is then that an indifference zone [β0 − δn, β] appears for the test statistic β̂.
Namely, the above theorem provides the claimed upper bound for the probability of type II error only if
β̂ > β and not for β̂ ∈ [β0 − δn, β].

The smaller δn and Δn, the bigger the set of alternatives Λβ0−δn(Δn) is. On the other hand, the
upper bound for the probability of type II error has the term e−Δn , so that taking Δn smaller makes the
probability of type II error higher. Also, as the above theorem shows, the sequence δn has to be at least
c(log n)−1 for a sufficiently large constant c in order to make the probability of type I error small. Thus,
there is some kind of trade-off between different aspects of the problem: an improvement upon one aspect
leads to the deterioration on the other.

For any β < β̄(θ) it is reasonable to call Pθ

{
β̂(Sn) ≤ β

}
the probability of undersmoothing. Given

θ ∈ Θβ0 , i.e., β0 < β̄(θ), we see that the probability of type I error α1(θ, β0, δn, n) is actually the
probability of undersmoothing Pθ

{
β̂(Sn) ≤ β0 − δn

}
, which we would like to be converging to zero,

with δn tuned as precisely as possible. The first assertion of the theorem claims that the probability
of undersmoothing converges to zero as n → ∞ for properly chosen δn. It says essentially that if

MATHEMATICAL METHODS OF STATISTICS Vol. 17 No. 1 2008
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β0 < β̄(θ), then our selection procedure picks values β which are smaller than β0 with exponentially
small probability. Asymptotically, there is no probability mass on (κ, β̄(θ) − ε].

On the other hand, if θ 
∈ Θβ0 , i.e., β0 ≥ β̄(θ), Pθ

{
β̂(Sn) ≥ β

}
can be regarded as the probability

of “oversmoothing”. We would like our selection procedure to pick the “oversmoothed” values β ≥ β0

also with small probability: Pθ

{
β̂(Sn) ≥ β

}
→ 0. However, we could not establish that the probability of

oversmoothing converges to zero for all θ such that β0 ≥ β̄(θ) (or θ 
∈ Θβ0). We established this fact only
for θ ∈ Λβ0−δn(Δn), which is essentially a subset of the complement of Θβ0 (see lemma below). Thus,
there is a sort of buffer zone between Θβ0 and Λβ0−δn(Δn) on which our selection procedure cannot
distinguish. It is impossible to get rid of this uncertainty: making the buffer zone for θ smaller leads to
the appearance of an indifference zone for β (see the remark above).

We give some heuristic arguments why this buffer zone should appear. Recall that our empirical
Bayes selection procedure is based on the prior designed to match the Bayes and frequentists versions
of the �2-risk signal estimation problem. The bias and variance of the estimator θ̂(β) are respectively
increasing and decreasing functions of β. The best choice of β is the one for which the bias and the
variance terms are balanced, they should be at least of the same order. Consider now the estimator θ̂(β̂).
For small values of β̂, the variance term of the risk will dominate the bias term, the undersmoothing
situation. Big values of β̂ will eventually lead to oversmoothing: bias will dominate the variance.
Presumably, the buffer zone consists of those θ for which the bias and variance terms of the risk of
θ̂(β̂) are balanced up to the order.

At a glance it is unclear how the sets Θβ0 and Λβ0−δn are related to each other. If δn → 0 and
Δn → ∞ as n → ∞, then we should have Θβ0 ∩ Λβ0−δn = ∅ for sufficiently large n. The following
lemmas describe in some sense the relation between the sets Θβ and Λβ and which θ’s are contained
in Λβ .

Lemma 3. Let β0 ∈ B. If θ ∈ Θβ0 and Δn = cn1/(2β0+1), then there exists N = N(θ, β0, c) such that
θ 
∈ Λβ0(Δn) for all n ≥ N .

Proof. Due to the assumptions made on the set Sn, we can assume without loss of generality that
β0 ∈ Sn. Indeed, since β0 < β̄(θ), also �β0�Sn < β̄(θ) for all sufficiently large n, and we can use �β0�Sn

instead of β0 everywhere in the proof.
For any β′ ≤ β0 we have that 0 ≤ ai(β0, β

′) ≤ n. Therefore, for any M ∈ N,
∞∑

i=1

ai(β0, β
′)(θ2

i − τ2
i (β′))

1 + n−1ai(β0, β′)
≤

∞∑

i=1

ai(β0, β
′)θ2

i ≤
∞∑

i=1

θ2
i

τ2
i (β0) + n−1

≤ M
M∑

i=1

i2β0θ2
i +

n

(M + 1)2β0

∞∑

i=M+1

i2β0θ2
i .

Take M = Mn = Mn(β0, Aθ(β0) = �ε(2Aθ(β0))−1n1/(2β0+1)�, so that the first term in the right-hand
side of the last inequality is not greater than εn1/(2β0+1)/2. Next, since Aθ(β0) < ∞, there exists
N = N(θ, β0, ε) such that for all n ≥ N ,

∞∑

i=Mn+1

i2β0θ2
i ≤ ε

2
(2Aθ(β0))−1/ε)−2β0 .

Thus above relations imply that
∞∑

i=1

ai(β0, β
′)(θ2

i − τ2
i (β′))

1 + n−1ai(β0, β′)
≤ εn1/(2β0+1)

for all n ≥ N(θ, β0, ε). Take ε = c/2, then β0 
∈ Vθ(Δn) and thus θ 
∈ Λβ0(Δn), which concludes the
proof of the lemma.
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The next lemma refines slightly the previous one if we assume that the points of the set Sn are distant
from each other by at least O

(
(log n)−1

)
.

Lemma 4. Let β0 ∈ B. If θ ∈ Θβ0 and min
β1,β2∈Sn

|β1 − β2| ≥ c
log n , then there exists N = N(θ, β0, c)

such that θ 
∈ Λβ0(0) for all n ≥ N .

Proof. Without loss of generality assume β0 ∈ Sn. Note first that 0 ≤ ai(β0, β
′) ≤ n for any β′ ≤ β0.

Therefore,
∞∑

i=1

ai(β0, β
′)(θ2

i − τ2
i (β′))

1 + n−1ai(β0, β′)
≤

∞∑

i=1

ai(β0, β
′)θ2

i −
1
2

∞∑

i=1

ai(β0, β
′)τ2

i (β′).

Since minβ1,β2∈Sn |β1 − β2| ≥ c
log n , we have for any β′ ∈ Sn such that β′ < β0 that β0 ≥ β′ + c

log n .
Using this, Lemmas 9 and 10, we obtain that for some C = C(β0, c)

∞∑

i=1

ai(β0, β
′)τ2

i (β′) = B(2β0 + 1, 1, 2(β0 − β′))n1−2β′/(2β0+1)(1 + o(1))

− B(2β′ + 1, 1, 0)n1/(2β′+1)(1 + o(1)) ≥ Cn1/(2β0+1)

for all n ≥ N1(β0, c). In the previous lemma, we proved that
∞∑

i=1

ai(β0, β
′)θ2

i ≤ εn1/(2β0+1)

for all n ≥ N2(θ, β0, ε). Take ε = C(β0, c)/2 and N = max{N1, N2}, to get that β0 
∈ Vθ(0) and thus
θ 
∈ Λβ0(0) for all n ≥ N .

Lemma 5. Let β0 ∈ B. If β0 > β̄(θ) (i.e., θ 
∈ Θβ0), then for any C > 0 and any N ∈ N there exists
n = n(θ,C) ≥ N such that θ ∈ Λβ0+1/2(Δn) with Δn = Cn1/(2β0+2).

Proof. Denote ε = β0 − β̄(θ). Lemma 8 implies that for any β′, β ∈ Sn, β′ ≤ β,
∞∑

i=1

ai(β, β′)τ2
i (β′) ≤

∞∑

i=1

τ2
i (β′)

τ2
i (β) + n−1

≤ C(κ)n1−2β′/(2β0+1) (9)

for some C(κ).
Next, for any β′ < β, 0 ≤ δ ≤ 1 − exp{−2(log 2)(β − β′)} and Tn = �n1/(2β+1)� we have

∞∑

i=1

ai(β, β′)θ2
i ≥ δ

∞∑

i=2

n2i2β+1θ2
i

(i2β+1 + n)(i2β′+1 + n)
≥ δ

2

Tn∑

i=2

ni2β+1θ2
i

i2β+1 + n
≥ δ

4

Tn∑

i=2

i2β+1θ2
i .

Consider any β ≥ β0 + 1
2 = β̄(θ) + 1

2 + ε. Since
∑∞

i=1 i2β̄+ε/2θ2
i = ∞, for any K > 0 there exist

infinitely many i ∈ N (subsequence ik → ∞ as k → ∞) such that i2β̄+1+εθ2
i ≥ K. This infinite sub-

sequence depends of course on the constant K. Thus
Tn∑

i=2

i2β+1θ2
i =

Tn∑

i=2

i2β−2β̄−εθ2
i i

2β̄+1+ε ≥ KT 2β−2β̄−ε
n ≥ Kn(2β−2β̄−ε)/(2β+1)

for infinitely many n. Certainly, n(2β−2β̄−ε)/(2β+1) ≥ n1−2β′/(2β+1) for any β′ ≥ β̄ + 1+ε
2 . Using this and

the last two relations, we have that for any β ≥ β̄ + 1/2 + ε there exists β′ ∈ [β̄ + 1/2 + ε/2, β) such
that

∞∑

i=1

ai(β, β′)θ2
i ≥ δ

4

Tn∑

i=2

i2β+1θ2
i ≥ δK

4
n1−2β′/(2β+1) (10)

for any K > 0 and infinitely many n.
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Combining estimates (9) and (10), we get that for any K > 0 and β ≥ β̄ + 1/2 + ε there exists
β′ ∈ [β̄ + 1/2 + ε/2, β) such that

∞∑

i=1

ai(β0, β
′)(θ2

i − τ2
i (β′))

1 + n−1ai(β0, β′)
≥

∞∑

i=1

ai(β, β′)
(

θ2
i

2
− τ2

i (β′)
)

≥
(

δK

8
− C(κ)

)

n1−2β′/(2β+1) (11)

for infinitely many n. Let ε1 = min{ε, 1}. Now, for any β ≥ β̄(θ) + 1/2 + ε, choose

β′ = β′(β) = �(β̄ + 1/2 + ε1/2)(2β + 1)/(2β̄ + 2 + ε1)�Sn .

In this case it is easy to see that β′ ∈ [β̄ + 1/2 + ε/2, β) and β − β′ ≥ ε/(2(2β̄ + 2 + ε1)). The
last inequality implies that if we take δ = δε = 1 − exp{−(log 2)ε/(2β̄ + 2 + ε1)}, then 0 ≤ δε ≤ 1 −
exp{−2(log 2)(β − β′)}. Note further that

1 − 2β′/(2β + 1) ≥ 1/(2β̄ + 2 + ε1) ≥ 1/(2β0 − 2ε + 2 + ε1) ≥ 1/(2β0 + 2).

Using this relation and (11), we obtain that for any K > 0 and any β ≥ β̄ + 1/2 + ε there exists
β′ ∈ [β̄ + 1/2 + ε/2, β) such that

∞∑

i=1

ai(β0, β
′)(θ2

i − τ2
i (β′))

1 + n−1ai(β0, β′)
≥

(
δεK

8
− C(κ)

)

n1−2β′/(2β+1) ≥
(

δεK

8
− C(κ)

)

n1/(2β0+2)

for infinitely many n, which implies that if we take K such that δεK
8 −C(κ) ≥ C, then θ ∈ Λβ0+1/2(Δn),

with Δn = Cn1/(2β0+2), for infinitely many n.

Remark 5. Suppose we want to test

H0 : θ ∈ Θβ0 against H1 : θ /∈ Θβ0−1/2,

for β0 − 1/2 ∈ B. Lemma 5 and Theorem 1 imply that for any N ∈ N there exists n ≥ N such
that the probabilities of type I and II errors are both exponentially small in n, provided |Sn| ≤
C1 exp{C2n

1/(2β0+1)} for some C1, C2 > 0.

Apart from the smoothness hypothesis testing framework, we can apply our results to the smoothness
classification problem. Suppose we have to decide which smoothness value from the set S we should
assign to our unknown signal θ on the basis of the observation X. Suppose we are allowed to choose
only between two known values, S = {β1, β2}. Assume β1 < β2. If we knew θ, a reasonable oracle
classifier of the signal smoothness would be �β̄(θ)�S , that is, if β̄(θ) < β2, then the oracle smoothness
classifier is β1, otherwise β2. Consider an empirical smoothness classifier �β̂(X)�S and the probability
of its misclasiffication error: γ(β, β′) = Pθ(�β̂(X)�S = β) while �β̄(θ)�S = β′, β, β′ ∈ S, β 
= β′.

There are three cases: (a) β2 ≤ β̄(θ), then �β̄(θ)�S = β2; (b) β1 ≤ β̄(θ) < β2, then �β̄(θ)�S = β1;
(c) β̄(θ) < β1, then again �β̄(θ)�S = β1. Case (a) is the easiest one, the misclassification probability
γ(β1, β2) is exponentially small according to Theorem 1. In case (c), by Lemma 5 and Theorem 1, we
derive that for any N ∈ N there exists n ≥ N such that the misclassification probability γ(β2, β1) is
exponentially small in n if β2 > β1 + 1/2.

Consider now case (b). If β2 > β̄(θ) + 1/2, we are essentially in the same situation as in case (c).
If β̄(θ) < β2 ≤ β̄(θ) + 1/2, our results do not provide any bound on the misclassification probability
γ(β2, β1). Thus if we assume that β1 and β2 are apart from each other by at least 1/2, i.e., β2 > β1 + 1/2,
we can apply our results only if β1 is sufficiently (depending on the difference β2 − β1) close to β̄(θ) so
that β2 > β̄(θ) + 1/2.

This uncertainty in case (b) appears because we look at the misclassification probability for the two
different values of the oracle classifier �β̄(θ)�S ∈ S = {β1, β2}, and not of the “true” smoothness β̄(θ)
of θ, which can actually take any value in B. Suppose now that we want to bound the misclassification
probability only when β̄(θ) ∈ S = {β1, β2}. Then we will have essentially only situations (a) and (c):
(a) β1 < β2 = β̄(θ) and (c) β̄(θ) = β1 < β2. In this case we can bound the misclassification probability
by applying Theorem 1 in case (a) and Lemma 5 and Theorem 1 in case (c), provided β2 > β1 + 1/2 in
case (c).
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4. AUXILIARY RESULTS

This section provides some lemmas which we need to prove the main results.

Lemma 6. For any β0, β ∈ Sn

Pθ

{
β̂(Sn) = β

}
≤ exp

{
1
2

∞∑

i=1

ai

(
τ2
i (β0) − θ2

i

)

1 + n−1ai

}

= exp
{

1
2

∞∑

i=1

(τ2
i (β) − τ2

i (β0))(θ2
i − τ2

i (β0))
τ2
i (β)τ2

i (β0) + 2n−1τ2
i (β0) + n−2

}

.

Proof. We use here the following shorthand notation: ai = ai(β, β0), bi = bi(β, β0).

Since β0 ∈ Sn, by (8) and the Markov inequality, we have

Pθ{β̂ = β} = Pθ

{
Zn(β, β′) ≤ 0 ∀ β′ ∈ Sn

}
≤ Pθ

{
Zn(β, β0) ≤ 0

}

= Pθ

{

−
∞∑

i=1

aiX
2
i ≥

∞∑

i=1

log bi

}

≤ Eθ exp
{

− 1
2

∞∑

i=1

aiX
2
i

}

exp
{

− 1
2

∞∑

i=1

log bi

}

.

To compute Eθ exp{−1
2aiX

2
i }, we use the following elementary identity for a Gaussian random variable

η ∼ N (μ, σ2):

E exp{λη2} = (1 − 2κσ2)−1/2 exp
{

κμ2

1 − 2κσ2

}

for λ <
1

2σ2
.

Apply this equality for λ = −ai
2 and η = Xi (condition λ < 1

2σ2 corresponds to −ai < n, which is always
true since |ai| < n for all i ∈ N):

Eθ exp
{

− 1
2
aiX

2
i

}

= (1 + n−1ai)−1/2 exp
{

−aiθ
2
i

2(1 + n−1ai)

}

.

Combining the previous relations, we obtain

Pθ{β̂ = β} ≤
∞∏

i=1

b
−1/2
i

(1 + n−1ai)1/2
exp

{
−aiθ

2
i

2(1 + n−1ai)

}

. (12)

From definitions (6) and (7) it follows

b−1
i

1 + n−1ai
= 1 +

aiτ
2
i (β0)

1 + n−1ai
.

Using this, the elementary inequality 1 + x ≤ ex, x ∈ R, and (12), we finally arrive at

Pθ{β̂ = β} ≤ exp
{

1
2

∞∑

i=1

ai

(
τ2
i (β0) − θ2

i

)

1 + n−1ai

}

= exp
{

1
2

∞∑

i=1

(τ2
i (β) − τ2

i (β0))(θ2
i − τ2

i (β0))
τ2
i (β)τ2

i (β0) + 2n−1τ2
i (β0) + n−2

}

.
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Lemma 7. Let Aθ(β0) < ∞ for some β0 ∈ Sn. Then there exists an N = N(β0, θ) such that for any
n ≥ N and any β ∈ Sn, β < β0, the inequality

Pθ

{
β̂(Sn) = β

}
≤ exp

{
I(β0)n1/(2β0+1)

2
+

5
8
− n1/(β+β0+1)

16

}

holds for all n ≥ N .
Moreover, let β0, Q > 0. Then there exists C1 = C1(β0, Q) such that for any β, β′

0 ∈ Sn, β ≤ β′
0 ≤

β0 − C1
log n , the inequality

sup
θ∈Θβ0

(Q)
Pθ

{
β̂(Sn) = β

}
≤ exp

{
B(1, 2, 0)n1/(2β′

0+1)

2
+

5
8
− n1/(β+β′

0+1)

16

}

holds for all n ∈ N. Here I(β0) = B(2β0 + 1, 2, 0) and B(1, 2, 0) are defined by (4).

Proof. We make use of Lemma 6:

Pθ{β̂ = β} ≤ exp
{

1
2

∞∑

i=1

(τ2
i (β) − τ2

i (β0))(θ2
i − τ2

i (β0))
τ2
i (β)τ2

i (β0) + 2n−1τ2
i (β0) + n−2

}

= exp
{

S1 + S2(θ)
2

}

, (13)

where

S1 =
∞∑

i=1

τ4
i (β0) − τ2

i (β)τ2
i (β0)

τ2
i (β)τ2

i (β0) + 2n−1τ2
i (β0) + n−2

= S11 − S12,

S2(θ) =
∞∑

i=1

−ai(β, β0)θ2
i

1 + n−1ai(β, β0)
=

∞∑

i=1

(
τ2
i (β) − τ2

i (β0)
)
θ2
i

τ2
i (β)τ2

i (β0) + 2n−1τ2
i (β0) + n−2

.

The rest of the proof of the first assertion is similar to the corresponding part from the proof of
Lemma 3.1 in Belitser and Ghosal [2], where a purely Bayesian smoothness selector was considered.
First we bound the term S1. As β < β0, we have i−(2β+1) > i−(2β0+1) and therefore, by Lemma 9 (see
also the remark after that lemma), we obtain

S11 =
∞∑

i=1

i−2(2β0+1)

i−2(β+β0+1) + 2n−1i−(2β0+1) + n−2
≤

∞∑

i=1

i−2(2β0+1)

(i−(2β0+1) + n−1)2

= n2
∞∑

i=1

1
(n + i2β0+1)2

≤ B(2β0 + 1, 2, 0)n1/(2β0+1) + 1.

To bound S12 from below, note first that the term i−2(β+β0+1) is not less than n−2 for i ≤ n1/(β+β0+1)

and not less than n−1i−(2β0+1) for i ≤ n1/(2β+1), which includes also all i ≤ n1/(β+β0+1), since β < β0.
This implies

S12 =
∞∑

i=1

i−2(β0+β+1)

i−2(β+β0+1) + 2n−1i−(2β0+1) + n−2

≥
�n1/(β+β0+1)�∑

i=1

i−2(β+β0+1)

4i−2(β+β0+1)
≥ n1/(β+β0+1) − 1

4
.

Combining the last two inequalities, we arrive at

S1 ≤ B(2β0 + 1, 2, 0)n1/(2β0+1) − n1/(β+β0+1)

4
+

5
4
. (14)

Now note that τ2
i (β) > τ2

i (β0) as β < β0. Then, for any m ∈ N, we have

S2(θ) ≤
∞∑

i=1

τ2
i (β)θ2

i

τ2
i (β)τ2

i (β0) + 2n−1τ2
i (β0) + n−2

=
∞∑

i=1

n2i2β0+1θ2
i

n2 + 2ni2β+1 + i2(β+β0+1)
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≤
m∑

i=1

i2β0+1θ2
i +

∞∑

i=m+1

n2i2β0θ2
i

i2β+2β0+1
≤ m

m∑

i=1

i2β0θ2
i +

n2

(m + 1)2β+2β0+1

∞∑

i=m+1

i2β0θ2
i .

Let Cε = Cε(Aθ(β0)) = max{1, 2Aθ(β0)/ε} for some fixed ε > 0. Take now

m = mn = mn(β0, β,Aθ(β0), ε) = �C−1
ε n1/(β+β0+1)�,

so that the first term in the right-hand side of the last inequality mn
∑mn

i=1 i2β0θ2
i ≤ εn1/(β+β0+1)/2 for

all n ∈ N. Next, there exists N = N(β0, θ, ε) such that for any n ≥ N
∑

i≥Mn

i2β0θ2
i ≤ ε

2
C−4β0−1

ε ≤ ε

2
C−2β−2β0−1

ε ,

with Mn = Mn(β0, Aθ(β0), ε) = C−1
ε n1/(2β0+1), which implies that the second term

n2

(mn + 1)2β+2β0+1

∞∑

i=mn+1

i2β0θ2
i ≤ C2β+2β0+1

ε n1/(β+β0+1)
∑

i≥Mn

i2β0θ2
i ≤ εn1/(β+β0+1)

2

for all n ≥ N , since mn + 1 ≥ Mn. Therefore the relation S2(θ) ≤ εn1/(β+β0+1) holds for all n ≥ N . We
choose ε = 1/8 and combine this relation with (13) and (14) to finish the proof of the first assertion of
the lemma.

To establish the second assertion, we repeat the arguments as above with β′
0 instead of β0. Since

S11 ≤ B(2β′
0 + 1, 2, 0)n1/(2β′

0+1) + 1 ≤ B(1, 2, 0)n1/(2β′
0+1) + 1, similarly to (14), we get now

S1 ≤ B(1, 2, 0)n1/(2β′
0+1) − n1/(β+β′

0+1)

4
+

5
4
. (15)

It remains to handle the term S2(θ) = S2(θ, β, β′
0) uniformly over θ ∈ Θβ0(Q). We assume that

Cε = max{1, 2Q/ε} for some ε > 0 to be chosen later and mn = �C−1
ε n1/(β+β′

0+1)�. As before, we derive
that for all n ∈ N

S2(θ) ≤ εn1/(β+β′
0+1)

2
+ n1/(β+β′

0+1)C
2β+2β′

0+1
ε

∞∑

i=mn+1

i2β′
0θ2

i .

If β ≤ β0 − K
log n with K = K(β0, Q, ε) = (2β0 + 1)2 log Cε, then

Cε

n1/(β+β′
0+1)

≤ Cε

n1/(2β0+1)n1/(β+β′
0+1)−1/(2β0+1)

≤ Cε

n1/(2β0+1)n(β0−β)/(2β0+1)2
≤ 1

n1/(2β0+1)
.

Therefore, as θ ∈ Θβ0(Q), Cε ≥ 1, and β < β′
0 ≤ β0 − C1

log n , we evaluate for all n ∈ N

C
2β+2β′

0+1
ε

∞∑

i=mn+1

i2β′
0θ2

i ≤
C4β0+1

ε
∑∞

i=mn+1 i2β0θ2
i

(mn + 1)2(β0−β′
0)

≤ C4β0+1
ε Q

(C−1
ε n1/(β+β′

0+1))2C1/ log n

≤ C4β0+1
ε Q

(n1/(2β0+1))2C1/ log n
=

C4β0+1
ε Q

e2C1/(2β0+1)
≤ ε

2

if C1 = C1(β0, Q, ε) = max{log
(
2QC4β0+1

ε ε−1
)(2β0+1)/2

,K}. Therefore, if β ≤ β′
0 ≤ β0 − C1

log n , the re-

lation S2(θ) ≤ εn1/(β+β′
0+1) holds uniformly over θ ∈ Θβ0(Q) and all n ∈ N. Take ε = 1/8 and combine

the last uniform bound for S2(θ) with (13) and (15) to finish the proof of the second assertion of the
lemma.

Remark 6. An interesting question is whether there exists a sequence βn = βn(θ) such that βn ↑ β̄(θ)
(eventually slowly enough) and Pθ

{
β̂(Sn) = βn

}
→ 0 as n → ∞.

Analyzing the exponential upper bound for Pθ

{
β̂(Sn) = βn

}
in the above lemma, we deduce that βn

can not approach β̄(θ) faster than at the logarithmic rate if we want this bound to converge to zero.
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Indeed, a β0,n has to be chosen in this upper bound so that βn < β0,n < β̄(θ), since it also has to satisfy
Aθ(β0,n) < ∞. It is not so difficult to see (by the same reasoning as in the proof of the first assertion of
Theorem 1) that this upper bound becomes small (of order exp{−Cn1/(2β0,n+1)} ≤ exp{−Cn1/(2β̄+1)})
only if β0,n and βn are sufficiently distant from each other, namely, β0,n ≥ βn + c/ log n for some
sufficiently large constant c. However, as follows from the proof, the larger Aθ(β0), i.e., the closer
β0 to β̄(θ), the larger the corresponding N = N(β0, θ) (the one for which the bound in the lemma
holds for all n ≥ N ). Therefore, even if βn ↑ β̄(θ) very slowly, we still cannot conclude in general that
Pθ

{
β̂(Sn) = βn

}
→ 0 as n → ∞.

Remark 7. The first assertion of the above lemma is not claimed to be uniform with respect to θ
since the inequality holds only for n ≥ N(β0, θ). However, if Aθ̄(β0) < ∞, then for a sufficiently small
ellipsoid size Q, the uniformity does hold. Indeed, we only need to evaluate the term S2(θ) uniformly
over θ ∈ Θβ0(θ̄, Q). Now, for any θ ∈ Θβ0(θ̄, Q) we have S2(θ) ≤ 2S2(θ̄) + 2S2(θ − θ̄). As in the proof
of Lemma 7, we can find N1 = N1(β0, θ̄, ε) such that S2(θ̄) ≤ n1/(β+β0+1)ε/4 for all n ≥ N1. Next, by
taking m = mn = �(n1/(β+β0+1)�, we derive that for any Q < ε/4 there exists N2 = N2(β0, Q) such that

S2(θ − θ̄) ≤ Aθ−θ̄(β0)n1/(β+β0+1) ≤ Qn1/(β+β0+1) ≤ n1/(β+β0+1)ε/4

for all n ≥ N2 for any θ ∈ Θβ0(θ̄, Q). We conclude that for any Q < ε/4 there exists

N3 = N3(β0, θ̄, Q, ε) = max{N1(β0, θ̄, ε), N2(β0, Q)}

such that S2(θ) ≤ εn1/(β+β0+1) for all n ≥ N3, uniformly over θ ∈ Θβ0(θ̄, Q). Take ε = 1/8 to derive the
assertion of the lemma uniformly over θ ∈ Θβ0(θ̄, Q) for any Q < 1/32.

Lemma 8. For any β′, β ∈ R such that κ ≤ β′ ≤ β the following inequality holds: for some
C = C(κ)

∞∑

i=1

τ2
i (β′)

τ2
i (β) + n−1

≤ C(κ)n1−2β′/(2β+1).

Proof. Since κ ≤ β′ ≤ β,
∞∑

i=1

τ2
i (β′)

τ2
i (β) + n−1

=
∞∑

i=1

ni2β−2β′

n + i2β+1

≤
�n1/(2β+1)�−1∑

i=1

i2β−2β′
+ 2n(2β−2β′)/(2β+1) +

∞∑

i=�n1/(2β+2)�+2

ni−(2β′+1)

≤
�n1/(2β+1)�∫

0

x2β−2β′
dx + 2n1−2β′/(2β+1) +

∞∫

�n1/(2β+1)�+1

nx−(2β′+1) dx

≤
(

1
2β − 2β′ + 1

+
1

2β′ + 2
)

n1−2β′/(2β+1) ≤ C(κ)n1−2β′/(2β+1),

with C(κ) = 3 + (2κ)−1.

Remark 8. By using Lemmas 9 and 10, one can improve the constant in the above upper bound for
sufficiently large n.

Finally we prove two technical lemmas used in the proofs of other results. Let b+ denote the
nonnegative part of b. A version of the following auxiliary result is contained in [16]. As compared to
Lemma 2 in [16], our lemma below provides also bounds for the second order terms suitable for our
purposes.
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Lemma 9. Suppose 0 < p < ∞, 0 < q < ∞, 0 ≤ r < ∞. Let γn → ∞ as n → ∞. If pq > r + 1, then
∞∑

i=1

ir

(γn + ip)q
= B(p, q, r)γ(1+r)/p−q

n + φn

and if pq > r, then

max
i∈N

ir

(γn + ip)q
= D(p, q, r)γ(r/p)−q

n + ψn,

where φn = φn(p, q, r) and ψn = ψn(p, q, r) are such that

|φn| ≤ D(p, q, r)γ
−q+ r

p
n , |ψn| ≤ C(p, q, r)γ

−q+
(r−1)+

p
n

for some constant C(p, q, r) > 0,

B(p, q, r) =
∫ ∞

0

urdu

(1 + up)q

is defined by (4), and

D(p, q, r) = rr/p(pq − r)q−(r/p)(pq)−q =
(

1 − r

pq

)q(pq

r
− 1

)−r/p

,

with the convention 00 = 1.

Remark 9. Notice that if r ≤ 1 or pq ≥ 2r then 0 ≤ D(p, q, r) ≤ 1.

Proof. Denote g(u) = ur

(γn+up)q , u > 0. The function g(u) is increasing on u ∈ [0, umax] and decreasing

on [umax,∞) with umax =
(
rγn/(pq − r)

)1/p. Therefore,
∫ ∞

0

ur

(1 + up)q
du − g(umax) ≤

∞∑

i=1

ir

(γn + ip)q
≤

∫ ∞

0

ur

(1 + up)q
du + g(umax)

with g(umax) = D(p, q, r)γ(r/p)−q
n , which establishes the first relation. To prove the second relation, we

first compute

g′(u) =
rγnur−1 − (pq − r)up+r−1

(γn + up)q+1

and then evaluate

max
u≥1

|g′(u)| ≤ max
{

max
u≥1

{
rγnur−1

(γn + up)q+1

}

,max
u≥1

{
(pq − r)up+r−1

(γn + up)q+1

}}

≤ C(p, q, r)γ
−q+

(r−1)+
p

n

for some constant C(p, q, r) > 0. Finally, using this bound and unimodality of the function g(u) on
[0,∞), we obtain

∣
∣
∣
∣g(umax) − max

i∈N

ir

(γn + ip)q

∣
∣
∣
∣ ≤ max

u≥1
|g′(u)| ≤ C(p, q, r)γ

−q+
(r−1)+

p
n ,

which completes the proof of the lemma.

The following short lemma follows directly from the properties of Beta and Gamma functions.

Lemma 10. Let r ≥ 0, p > r + 1. Then

B(p, 1, r) =
π

p sin
(
π(r + 1)/p

) , B(p, 2, r) =
π(p − r − 1)

p2 sin
(
π(r + 1)/p

) .

MATHEMATICAL METHODS OF STATISTICS Vol. 17 No. 1 2008



EMPIRICAL BAYESIAN TEST 17

Proof. From the definition of the function B we get

B(p, q, r) = p−1 Beta
(

q − r + 1
p

,
r + 1

p

)

=
Γ
(
q − r+1

p

)
Γ
(

r+1
p

)

pΓ(q)
,

where Γ(·) is the Gamma function. The lemma follows by the following properties of the Gamma
function: Γ(1) = Γ(2) = 1, Γ(z)Γ(1 − z) = π/ sin(πz) and Γ(1 + z) = zΓ(z).
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