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1. INTRODUCTION 

Recognition of genes in eukaryotic DNA is seriously 
complicated by the exon-intron structure. Currently, 
the most popular approach is to consider a set of 
candidate exons weighed by some statistical par- 
ameters and then construct the optimal gene, defined 
as a consistent chain of exons, using dynamic 
programming (DP) (Gelfand and Roytberg, 1993; 
Snyder and Stormo, 1993, 1995; Storm0 and 
Haussler, 1994; Xu et al., 1994b; Gelfand et al., 
1996a). However, straightforward application of this 
approach meets difficulties of both conceptual and 
computational natures. Each candidate gene is 
characterized by several diverse statistical par- 
ameters, and it is not immediately clear how to 
combine them in a single scoring function. This is 
overcome partially by application of neural networks 
either for scoring individual exons (Xu et al., 1994a, 
1994b) or in combination with a DP procedure so 
that multiple rounds of network training and 
construction of the optimal genes are performed 
(Snyder and Stormo, 1993, 1995). However, the use 
of the standard DP implies that we consider only 
additive scores, although in various branches of 
biopolymer sequence analysis non-linear functions 
sometimes perform better (e.g. Piterbarg, 1992; 
Brodsky et al., 1993). The opportunity to consider 
non-linear functions is provided by vector dynamic 
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programming, which constructs the set of genes 
guaranteed to contain the optimal gene for each 
function satisfying some natural monotonicity con- 
ditions (Pareto set) (Gelfand and Roytberg, 1993). 

Here we consider some new problems arising in this 
field. The plan of the paper is as follows. First, we 
state the problem of exon assembly in general graph 
terms and demonstrate that most existing approaches 
can be formulated using this language; the exposition 
in this section follows the line of Finkelstein and 
Roytberg (1993). Then we consider the vector 
dynamic programming algorithm and describe the 
results of prediction for one particular non-linear 
function. 

In the traditional approaches to gene recognition 
an algorithm is trained so as to minimize some 
parameter dependent both on the number of false 
positive and false negative predictions (e.g. the 
correlation coefficient). Thus, the average perform- 
ance is optimized. However, there exist situations 
where it is desirable to minimize either over-, or 
underprediction, while paying less attention to false 
negatives (respectively, false positives). Two such 
“extremal” problems are considered in Sections 5 
and 6. 

In Section 5 we suggest a procedure for filtration 
of candidate exons taking into account their 
combinatorial possibilities for linking with other 
exons. Such a procedure is useful, since the number 
of candidate exons is usually very large, whereas 
many algorithms are polynomial or even exponential 
on the number of exons; it is clear that this procedure 
should be highly sensitive, i.e. allow (almost) no 
underprediction. 

Section 6 is devoted to the problem of the 
high-specificity prediction of coding segments (not 
necessarily complete exons), which arises from the 
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need to construct oligonucleotide probes and primers 
given genomic sequences for subsequent experimental 
analysis of cDNA libraries or total cellular RNA 
using hybridization or RT-PCR (reverse transcrip- 
tion-PCR) techniques (Parrich and Nelson, 1993; 
D’Esposito et al., 1994). 

Finally, we demonstrate that in many cases the 
general exon assembly graph can be reconstructed, 
providing a sharp increase in computational effective- 
ness. 

When describing data structures and algorithms we 
will usually ignore technical complications such as 
accounting for the reading frame, keeping an open 
reading frame in the spliced gene, taking into account 
non-zero widths of donor and acceptor splicing sites, 
consideration of codons interrupted by exon-intron 
boundaries, etc. Usually, in the course of implemen- 
tation, it is clear how to take care of these problems, 
although they can seriously complicate the expo- 
sition. We assume that the reader is familiar with 
basic biological facts about splicing (for a review see, 

e.g. Sharp, 1994). Necessary computer science 
definitions can be found in Aho et al. (1976). 

In all of the implementations mentioned below we 
use only the simplest statistical parameters (codon 
usage and positional nucleotide frequencies in 
splicing sites). 

2. GRAPH REPRESENTATION OF THE GENE 
RECOGNITION PROBLEM 

We start with a nucleotide sequence with marked 
positions of candidate start and stop codons, and 
donor and acceptor sites (Fig. l(a)). Each site is 
assigned a numerical weight dependent on the 
sequence around it and computed using some 
empirical procedure (reviewed, e.g. in Gelfand, 1995). 

The sites generate candidate exons and introns, and 
their combinations form exon-intron structures, or 
genes. Formally, candidate exon is a sequence 
fragment whose left boundary is an acceptor site or 
a start codon, whilst the right boundary is a donor 

(a) 
tccatgcagaccatggcggtacaggacatgccggtgcagctctgactt 

(b) 
ATOCAGACCATGGCGgt  
AT 'CSCAGACCATGGCGGTACAGGACATGCCGgt  
AT 'CX1AGACCATGGCGGTACAGGACATGCCGGTGCAGCTCTa 

agACCATGGCGgt 
agACCATGGCGGTACAGGACATGCCGgt  
agACCATGGCGGTACAGGACATGCCGGTGCAGCTCn; lA 

ATGGCGgt 
ATGGCGGTACAGGACATGCCGgt  
ATQXGGTACAGGACATGCCGGTGCAGCTCTGM 

agGACATGCCGgt 
agGACATGCCGGTGCAGCTCW 

AT@XGgt 
ATUXGGTGCAGCTCTaA 

agCTCTQA 

(cl 
Start ACC. Start ACC . Start ACC. Sink 

Source Don. stop 

Fig. 1. A sample sequence and generated graphs. (a) Sequence with candidate sites marked with bold 
italics. (b) List of candidate exons. (c) Site graph. (d) Corresponding railway graph. 
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(a) 
tccATQZAGACCATGGCGgtacaggacatgccggtgcagCTCT~ctt 

231 

(b) 
ATGCAGACCATGGCG CTCTGA 

gtacaggacatgccggtgcag 

(c) 
ATGCAGACCATGGCG CTCTGA 

tee gtacaggacatgccggtgcag ctt 

Fig. 2. A candidate gene and corresponding paths (bold arcs). (a) Candidate gene (where bold italics 
indicate generating sites and capitals indicate candidate exons). (b) Path on the site graph. (c) Path on 

the railway graph. 

site or a stop codon. [Note that this definition slightly 
deviates from the biological reality, since we consider 
only translated exons or translated parts of exons 
(Fig. l(b)).] Similarly, candidate intron is a fragment 
between a donor site and an acceptor site, or between 
the beginning of the sequence and a start codon, or 
between a stop codon and the end of the sequence. 
Like sites, candidate exons and introns can be 
supplied by weights scoring their statistical exon and 
intron likeness (Fickett and Tung, 1992; Gelfand, 
1995). 

Candidate gene is a chain of non-intersecting 
alternating exons and introns (iO, e,, i,, , e,,, i,,) 
(Fig. 2(a)) that cover the entire sequence and satisfy 
the natural consistency conditions: 

(i) the total length of exons is divisible by 3; 
(ii) in exons there are no in-frame stop codons; 
(iii) the first intron+xon boundary (iO, e,) is a 

start codon; the last exon-intron boundary (e,,, i,,) is 
a stop codon. 

However, most algorithms described below can be 
simply generalized to the case of incomplete genes 
violating condition (iii) and possibly condition (i). 

Given a sequence with marked sites or a set of 
candidate exons and introns, it is possible to 
construct an acyclic-oriented graph G such that the 
set of complete paths on this graph is set in 
one-to-one correspondence with the set of complete 
genes. Thus the gene recognition problem reduces to 
analysis of paths in the graph G often performed 
using some form of dynamic programming (Finkel- 
stein and Roytberg, 1993). 

This reduction, often implicit, can be done in 
several ways dependent upon particular weighting 
functions, procedures for candidate exon filtering 
(e.g. Xu et al., 1994b), etc. The choice of the graph 
G can seriously affect the effectiveness of the 
algorithm. 

Below we describe site graph, which has vertices 
that are sites and arcs that are exons and introns 
(Snyder and Stormo, 1993, 1995). Other possibilities 
are intron graph with vertices that are introns and arcs 
that are exons (Gelfand and Roytberg, 1993; Xu 
et al., 1994b; Gelfand et al., 1996a), and railway 
graph, considered in Section 7. Note that the number 
of vertices in the intron graph is much larger than 
that in the site graph. The railway graph is the 
smallest one. However, it places some restrictions on 
the scoring procedures. 

3. DYNAMIC PROGRAMMING ON SITE 
GRAPH 

Consider an acyclic-directed graph G where 
vertices are splicing sites, start and stop codons, and 
arcs are exons and introns (Fig. l(c)). In order to 
account for the reading frame, it is convenient 
to assign to each site three vertices corresponding to 
three possible positions of the site relative to the 
triplet reading phase. Further, trivial filtering allows 
one to retain only exons with no in-frame stop 
codons, and introns that link vertices with a 
consistent reading phase. Thus, each path corre- 
sponds to some candidate gene, and conversely, each 
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gene is represented by a path in G (Fig. 2(b)). The set 
of all paths in G is denoted by S,. 

Each arc e = (0,~‘) is supplied by a (not necessarily 
scalar) weight W(e) = W(o,v’). Let p = e, 0.. Oe,, be 
a path corresponding to some candidate gene. The 
path weight (gene score) is then defined as the formal 
product of weights of arcs (exons and introns) 
forming the path: 

W(p) = W(e,a . . . De,,) = W(e,)@ .@ W(e,) 

= ,+,We,). (1) 

If S is a set of paths, its total weight is the formal sum 
of path weights 

W) = FsW(P) 
The objective is to compute Q(S,). 

(2) 

The operations @  and 0 are not necessarily 
numerical multiplication and addition. It is required 
only that they satisfy the semi-ring axioms (Finkel- 
stein and Roytberg, 1993). Associativity of @  is used 
in the definition of path weight by equation (l), and 
associativity and commutativity of @  is used in the 
definition of m(S) by equation (2), and this means 
that we can consider $ as a multivalent operation. 
DP specifically uses the distributivity of @  relative to 
0: 

W@(w’@ w ”) = (W@W)0(W@W), (3) 
(w’$w”)@W= (W@W)$(w”@W). 

This is the property that allows one to compute (D(&) 
in an effective way that avoids explicit consideration 
of all paths from the set. Indeed, let S(v,) be the set 
of paths coming to some vertex vi, and let e be an arc 
starting in v. Then 

,~0&vPW = pc$+)(W(P)@W(e)) 

= p$3jW) @We) (4) 
(. > 

Now, if v is a vertex and (u,,v) ,..., (Q,v) are all 
vertices entering v, then 

(D(S(v)) = @,W(P) = 6, 
( ’ 

pE@~W(po(~IJd) 
> 

= ,q@,, W(P))@ W(w)) 

= ,psw3 W (w)) . (5) 

This formula provides the recurrency for computing 
@ (S(v)) given the set weights @ (S(vJ), i = 1, . . , k, 
for predecessors of v. 

In most algorithms the arc weights W  are real 
numbers. If now @  is the simple addition of path 
weights and @  is the operation of taking the 
maximum (it is simple to prove that the semi-ring 
axioms are satisfied), we get the usual problem of 
finding the optimal path weight, which together with 
a backtracking procedure, constructs the highest 
scoring gene. This approach is employed by 
GeneParser (Snyder and Stormo, 1993, 1995) and 

GRAIL (Xu et al., 1994b). If @  is multiplication, @  
is addition, and arc weights are considered to be 
energies, then equation (2) transforms into the 
definition of the partition function (Storm0 and 
Haussler, 1994) 

W W  = C l+xp We). (6) 
P% l&P 

Then W(p)/@(&) is the probability of the pathp. The 
duality between addition/maximum and multipli- 
cation/addition weight systems ‘is well known in 
computational molecular biology. [See Finkelstein 
and Roytberg (1993) for other examples of this kind.] 
Some further results based on these definitions are 
described in Sections 5 and 6. 

4. VECTOR DYNAMIC PROGRAMMING, 
SUBOPTIMAL GENES, MULTICRITERIAL 

OPTIMIZATION, AND NON-LINEAR 
SCORING FUNCTIONS 

Since our knowledge of the statistical properties of 
genomic DNA sequences is far from complete, we 
cannot always find the correct exon assembly; we also 
do not have a standard way of weighing diverse 
statistical parameters and do not even know what 
types of scoring functions are reasonable. Thus, some 
sort of pattern recognition is required. One way to do 
this is to consider linear scoring functions, set 
coefficients for parameters by a neural network or a 
similar technique, and consider multiple suboptimal 
assemblies (Snyder and Stormo, 1993, 1995). Another 
possibility is provided by multicriterial optimization 
based on vector dynamic programming (Gelfand and 
Roytberg, 1993; Gelfand et al., 1996a). 

Assume that each arc e is weighed by a vector 
(w(e),..., w,,(e)). Path weights are defined by the 
componentwise addition of weights of the constituent 
arcs: for p = e, 0.. Oe,, we have 

w(p) = i B$e,), j = 1,. . , m  . 
,=I 

(7) 

We say that a vector U dominates over a vector V 
(denoted U> V) if U,> I/, for any j= l,..., m  and 
at least one inequality is strict. If H is a set of vectors, 
its Pareto subset Y(H) is a subset such that 
that (i$ ,“:““y VEHJY(H) there exists V??(H) such 

(ii) for’ any U, U’EY(H) neither U > U’, nor 
u< U’. 

The Pareto subset is a multidimensional analog of 
the maximum value (in the one-dimensional case 
Y(H) is a set containing a single element 
max{ UEH}). Allowing ourselves some latitude in our 
treatment, we will consider also Pareto sets of paths, 
meaning the set of paths the weights of which 
constitute the Pareto set of vectors. Formally, if 
S is a set of paths, its Pareto subset P(S) = 
{SCSI W(s)EY( W(S))}, where W(S) = { W(s)lsES) is 
the set of path weights. we can also define 
domination conditions on paths, directly, as in 
Gelfand and Roytberg (1993) and Gelfand et al. 
(1996a).] 
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Without loss of generality we can assume that the 
gene score is a function of the components of the 
corresponding path weight increasing monotonically 
at each of its m variables. It is simple to demonstrate 
that the Pareto set contains an optimal gene for all 
scoring functions. Thus, rather than fixing the scoring 
function and constructing the set of suboptimal 
solutions, we instead construct the set containing an 
optimal solution for any scoring function satisfying 
the natural monotonicity conditions (Gelfand and 
Roytberg, 1993). 

This procedure follows the general scheme of 
Section 3. Recall the problem of finding the 
maximum path weight. Then for each vertex v we 
considered the set of paths S(v) ending in v and 
computed 

@(S(v)) = @,WP) = max I WPNPWV)) . (8) 

The distributivity given by equation (4) allowed us to 
retain only one path coming to v. 

Now @(S) = @pcsW(p) = Y(W(S)) is the Pareto 
subset of the set W(S). So defined, @ together 
with @ given by equation (7) satisfy the semi-ring 
axioms [formally, the semi-ring elements are 
vector sets: H@H’ = Y(HUH’); H@ H’ = Y{ V + 
V’IVEH, V’0f’}]. Now since by definition 
@(S) = @(P(S)), we may retain only paths from the 
Pareto set P(S). 

Computer experiments demonstrated that non- 
linear functions indeed perform better than linear 
ones. We considered the following vector of arc 
weights: acceptor site score A and donor site score D 
defined as the Berg-von Hippel discrimination energy 
(Gelfand, 1989); coding potential C defined as the 
sum of codon weights equal to logarithms of codon 
frequencies; exon length L; and exon counter 1 (so 
that the path weight had the component N equal 
to the number of the constituent exons). The gene 
score was (recall that we use the same notation for 
the components of the arc weight and the path 
weight) 

R= A-N/h + D-NPO ; C-k 
NfJA NG JLlc ’ (g) 

where p. and 6, denote, respectively, the mean and 
the standard deviation of the parameter CI on a 
learning sample. 

The vector dynamic programming algorithm using 
this very simple set of statistical parameters was 
implemented in the Genome Recognition and Exon 
Assembly Tool (GREAT) (Gelfand Ed al., 1996a). Its 
performance on an independent test sample was 
comparable to that of GRAIL II (Xu et al., 1994a). 
Sensitivity of GREAT was 88%, specificity was 79%, 
and the exact prediction was obtained in 27% of 
cases. GRAIL II had 82% sensitivity, 90% specificity 

and 4% exact predictions. More detailed analysis of 
the results, including hard cases, confirmed the 
general impression that GREAT is more sensitive, 
but less specific than GRAIL II with the same overall 
quality of predictions (Gelfand et al., 1996a). 

5. CONTEXT-DEPENDENT FILTRATION OF 
EXONS 

After the first combinatorial algorithms had been 
implemented, it was noted that true exons tend to 
appear in many high-scoring structures (Gelfand, 
1990; Snyder and Stormo, 1993). This observation 
was formalized in the algorithm for computation of 
the partition function (Storm0 and Haussler, 1994) 
described in Section 3. This algorithm is applicable 
only in the distributive case. However, the general 
idea of restoring exons according to their context, 
more exactly, their ability to participate in high-scor- 
ing structures, can be used in more general situations 
as well. In particular, this technique can be used for 
exon filtering, where the aim is to decrease the 
number of candidate exons without losing more than 
some fixed fraction of actual exons. 

We define new exon scores as 

(10) 

where c is some constant, the summation is taken 
over all genes p from the Pareto set P, and R is the 
gene-scoring function, e.g. the one defined by 
equation (9). Then we can order the exons by the 
decrease of their new scores and consider the given 
fraction of all exons. As an extreme case, we can use 
all exons that occur in Pareto-optimal genes. Exon 
filtration can be performed using arbitrary exon 
chains (not necessarily complete genes; in the 
experiment described below we used two-exon 
chains), and the filtered exons can then be used to 
construct longer chains. This allows one to perform 
the computationally intensive construction of the 
Pareto set of multi-exon genes on a smaller set of 
exons. The filtered set can also be input to the 
similarity-based algorithm of spliced alignment, 
increasing the quality of its predictions, which 
strongly depends on the number of candidate exons 
(Gelfand et al., 1996b). 

Table 1 presents results of testing the above 
approach on a set of 244 human genes of length up 
to 32000 nt. The statistical parameters (codon 
frequencies, positional nucleotide frequencies on the 
splicing sites) were taken from Gelfand et al. (1996a). 
The exon filtering procedure depends on a single 
adjustable parameter, the number of accepted 
candidate exons per 100 nt (without filtering there 
would be approximately 150 candidate exons per 
100 nt). It can be seen that in the entire range of 

Table 1. Filtering of candidate exons 

Exons per 100 nt 
Score I 2 3 4 5 6 7 8 9 IO 

Equation (9) 89 129 152 169 183 194 205 212 216 220 
Equation (IO) 124 I59 182 197 207 218 226 228 229 229 

Exons are scored by equation (9) and restored by equation (IO): then the given number of candidate exons (I-IO per 100 nt) is retained. 
The values in each cell show the number of genes with no actual exons lost during the filtering. 

CAC 21/4-l? 
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Table 2. Results of predictron for long human genes 

Candidate segments 
Coding segments I 2 3 4-9 Total 

I 49 I 0 I 51 
2 44 4 3 51 

The values in each cell show the number of genes where the given 
number of candidate segments should be considered in order to 
get the given number of coding segments 

values the combinatorial procedure restoring exons 
according to equation (IO) outperforms the purely 
statistical filter without restoring. 

6. OLIGONUCLEOTIDE PROBE SELECTION 
FROM GENOMIC DNA 

Analogously to equation (10) we can score an 
arbitrary sequence fragment. It can be useful when 
there is no necessity to predict complete genes or 
complete exons, but the prediction should be highly 
specific, that is, allowing almost no false positives. 
One of the possible experimental settings for such 
programs is construction of oligonucleotide probes or 
PCR primers. 

We use the following approach. Let b be a position 
in the analyzed fragment, and let S(b) be the set of 
genes in which b belongs to some exon. The 
nucleotide score is defined as 

w(b) = 1 exp(cW)). 
PCSVI 

(11) 

The score of a segment B = 1.. .k is defined as the 
average nucleotide score: 

w*(B) = ; i W ’(b). (12) 
h= I 

Then the segments are ordered by a decrease of their 
scores. If PCR primers are predicted, one can 
consider pairs of segments occurring at a distance 
exceeding some threshold. 

Testing of the algorithm (Roytberg et al., 1996, 
1997) has demonstrated that it indeed can be used for 
highly specific recognition of coding segments. On a 
set of 51 human DNA fragments of length 
1000~30000 nt (Table 2) the highest scoring segment 
of length 30 was coding in 49 cases. If a pair of coding 
segments was needed, two candidates were sufficient 
in 44 cases, whilst three candidates were sufficient in 
48 cases. The algorithm was also tested on a sample 
of 124 Arabidopsis genes (Korning et al., 1996) 
(Table 3). To have a single coding segment, it was 
sufficient to retain the highest scoring candidate in 
120 cases, and the two best candidates in the 
remaining 4 cases. To have two segments, two 
candidates were sufficient in 116 cases and three 
candidates in 6 more cases. 

Table 3. Results of prediction for Arabidopsis 

Candidate segments 
Coding segments I 2 3 4 Impossible Total 

I 120 4 00 0 124 
2 - II6 6 1 I 124 

Notation as in Table 2. 

7. RAILWAY GRAPH 

The number of arcs in the graphs considered in 
previous sections is quadratic relative to the number 
of vertices (sites). Since the number of candidate sites 
is typically rather large (or we risk losing some actual 
sites and the corresponding exons). even the 
polynomial DP procedures become computationally 
intensive. However, if path weights (or their 
components in the vector situation of Section 4) can 
be defined as sums of arc weights as in equation (I) 
or equation (7) it is reasonable to assume that exon 
(or intron) weight can be defined as the sum of 
weights of individual codons or nucleotides. Indeed, 
if we can perform addition over segments, why 
restrict this possibility only to exons (introns), and 
not to arbitrary sequence segments. 

If the above additivity holds, we can present the 
data in the form of a much smaller railway graph 
(Fig. l(d)). Its vertices again are donor and acceptor 
sites (two vertices per site), whereas the arcs are of 
two types: rails corresponding to segments situated 
between sites and considered to be coding (upper rail 
on the figures) and non-coding (lower rail); and ties 
corresponding to transitions between states (coding 
+ non-coding at donor sites and non-coding + 
coding at acceptor sites). Each path on the old graph 
(Fig. 2(b)) corresponds to a path on the new graph 
(Fig. 2(c)) and vice versa, whereas additivity of 
segment weights allows one to define path weights in 
the usual manner. The number of arcs in the railway 
graph is linear relative to the number of vertices, 
which makes the computation much more effective. 

8. CONCLUSION 

The main result of this work is that the 
combinatorial approach to gene recognition provides 
a flexible tool that can be simply tuned to different 
experimental situations. We have considered three 
particular examples of its use: recognition of genes 
with reasonable average sensitivity and specificity, 
and two extremal situations when one of these quality 
parameters is more important than the other. In all 
cases we saw that the developed algorithms provide 
predictions useful for experimental biologists. 

Most exon assembly methods find the best gene 
candidate or several candidates, but do not 
specifically consider the situation when the analyzed 
fragments are entirely non-coding. This situation can 
be diagnosed by GREAT, which has three possible 
answers: “coding” (with a list of gene candidates), 
“non-coding”, and “no opinion” (a list of candidates 
is produced, but no opinion is given about the 
certainty of prediction). Decrease of the “no opinion” 
zone requires the use of more complicated statistical 
parameters. 

An important open problem is analysis of large 
genome fragments, covering many genes. It requires 
linking of the exon assembly procedures with 
modules for prediction of functional signals such as 
promoters and polyadenylation sites. 

Finally, it might be useful to combine the gene 
recognition methods based on statistical analysis with 
the powerful similarity-based techniques. It has been 
demonstrated in (Snyder and Stormo, 1995) that 
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simple use of BLAST scores as one more exon 
characteristic seriously improves the recognition 
quality (see also Burset and Guigo, 1996); our results 
show that simple exon filtering enhances the 
performance of the spliced alignment algorithm 
(Gelfand et a/., 1996b). Thus it can be expected that 
merging of statistics with bank searches and 
similarity analysis within a uniform combinatorial 
frame will be the main direction of development in 
the field of gene recognition. 
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