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Abstract

Recent studies demonstrate that the organization of the chromatin within the nuclear space might play a crucial role in the
regulation of gene expression. The ongoing progress in determination of the 3D structure of the nuclear chromatin allows
one to study correlations between spatial proximity of genome domains and their epigenetic state. We combined the data
on three-dimensional architecture of the whole human genome with results of high-throughput studies of the chromatin
functional state and observed that fragments of different chromosomes that are spatially close tend to have similar patterns
of histone modifications, methylation state, DNAse sensitivity, expression level, and chromatin states in general. Moreover,
clustering of genome regions by spatial proximity produced compact clusters characterized by the high level of histone
modifications and DNAse sensitivity and low methylation level, and loose clusters with the opposite characteristics. We also
associated the spatial proximity data with previously detected chimeric transcripts and the results of RNA-seq experiments
and observed that the frequency of formation of chimeric transcripts from fragments of two different chromosomes is
higher among spatially proximal genome domains. A fair fraction of these chimeric transcripts seems to arise post-
transcriptionally via trans-splicing.
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Introduction

DNA molecules are tightly packed within the mammalian

nucleus, yet little is known about the chromatin organization

beyond the scale of nucleosomes. We are just beginning to

comprehend the complexity of the chromosome folding principles

and how they might shape the transcriptional regulation. In

interphase nuclei, chromosomes are organized into distinct,

dynamic, non-overlapping territories [1]. The dynamic rearrange-

ments of chromosome regions relative to other chromosomal loci

appear to be involved in the regulation of gene expression.

Advancing technological developments have revealed that the

chromatin is folded into loops bringing together loci from different

chromosomes. This observation has led to the hypothesis that

genes can be regulated in trans by regulatory elements on other

chromosomes [2].

The development of the chromosome conformation capture

(3C) technology has enabled detailed analysis of long-range

interactions in the chromatin. This method uses spatially

constrained ligation followed by locus-specific polymerase chain

reaction [3]. Recently, a new technology called Hi-C was

developed. It probes the three-dimensional architecture of whole

genomes by coupling proximity-based ligation with parallel

sequencing [4]. The authors constructed a spatial proximity map

of the human genome at the resolution of 1 megabase for the

lymphoblastoid cell line GM06990 and the erythroleukemia cell

line K562.

Another area where technological advances have generated

huge amounts of data is the characterization of the functional state

of the chromatin as reflected in the epigenetic marks such as

methylation of DNA, histone modifications, and DNAse sensitivity

demonstrating the open state of the chromatin [5–7]. It has been

shown that these characteristics correlate with each other, as well

as with localization of genes, promoters, enhancers and other

functional regions, and gene expression levels [8–11]. A functional

annotation of the human genome revealing the genome-wide

locations of diverse classes of epigenetic mark combinations, or

chromatin states, has been provided [12].

Here, we study correlations between spatial proximity of

genome domains, located on different chromosomes, and their

epigenetic marks. The results show that interacting loci seem to

share transcriptional factories and have similar histone modifica-

tions, methylation state, DNAse sensitivity level, expression level,

and chromatin state patterns in general.

Deep sequencing of transcriptomes from worms to humans

reveals that some transcripts are composed of sequence segments

that are not co-linear, with pieces of sequence coming from distant

regions of the reference genome, even from different chromosomes

[13]. Some of these chimeric transcripts are formed by genetic
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rearrangements, but others may arise post-transcriptionally via

trans-splicing [14]. Recent studies suggest that apparent chimeric

RNAs might possibly be generated by experimental artifacts [15].

However, the same study identified 80 genes undergoing trans-

splicing between homologous alleles. Here, we observe numerous

chimeric RNAs between spatially proximal regions of different

chromosomes, suggesting that trans-splicing is a more common

process in human than previously believed and may govern

expression of architecturally complex genes.

Results

Elimination of systematic biases affecting Hi-C procedure
The spatial proximity map was constructed using high-

throughput sequencing methods [4] and could be contaminated

by sequencing artifacts originating from template switching during

RT-PCR reaction or read mapping errors. Both these types of

sequencing artifacts seem to occur more frequently in highly

homologous regions. If there are two such regions located in two

distant parts of the genome, mapping programs can get confused

and align the second mate pair read to a different location instead

of the locus the first mate pair read is aligned on. DNA-polymerase

also can switch between template molecules if the latter contain

stretches of identical sequences [16].

To control for these possibilities, we calculated sequence

identity levels between interacting genome fragments (Fig. 1).

Only pairs of fragments originating at different chromosomes were

considered here and in all further analyses to avoid normalization

for the linear distance between the fragments. The identity level

for two interacting fragments i and j was computed by summing

the length of sequence regions highly similar between these

fragments (found by the blastn tool [17] with 92% threshold for

identity that is equivalent to a 75 nucleotide read with 6

mismatches) and dividing it by 106. Spatial proximity values were

divided into 29 intervals. Abnormally high identity levels were

observed in genome fragments with the spatial proximity values

higher than 0.55, leading to the conclusion that some of these

‘‘spatially proximal’’ fragments may not be adjacent in the nucleus

but result from sequencing or mapping artifacts, such as PCR

recombination events in the Hi-C protocol. Moreover, the total

number of fragment pairs in the tail intervals is much lower than

in the central intervals (Fig. 2), and the results for these intervals

have lower statistical robustness. Hence, only intervals from {0:3
to 0:55 are considered further.

We also observed a distinct, although non-significant, peak of

the similarity between fragments with spatial proximity near zero.

To identify its source, we analyzed the repeat content of fragments

using the data from the UCSC Genome Browser Database [18]

(Fig. S1). The repeat content was calculated as the average

number of nucleotides masked by RepeatMasker program in two

interacting 1-Mb fragments. A peak in the near zero interval was

observed for exapted repeats (conserved non-exonic elements that

have been deposited by mobile elements [19]). That might mean

that such repeats are slightly underrepresented in ‘‘non-standard’’

regions distant from the rest of the chromatin, or forming tight

foci. This observation deserves a special, separate analysis.

After this manusript had been submitted, another paper

describing biases in the Hi-C data was published [20]. The

authors report on the distance between restriction sites, the GC

content of the ligation junctions and read mappability as the major

systematic biases affecting the Hi-C experimental procedure. To

eliminate these biases, they developed an algorithm re-normalizing

the Hi-C data. Following this algorithm, we repeated their

normalization procedure and produced the genome-wide smooth

normalized contact enrichment matrix D for the lymphoblastoid

cell line GM06990, exactly as described in [20]. We repeated our

analyses (see below) for this matrix D and two matrices from the

original Hi-C paper [4] (the contact enrichment matrix M* and

the correlation matrix C, see Methods for details) independently to

demonstrate that the results do not depend in principle on a

smoothing algorithm, normalization method, or bias removal

procedure.

Figure 1. Sequence identity levels in 29 considered intervals of
spatial proximity values between 1-Mb fragments of different
chromosomes in the genome-wide correlation matrix C [4] (see
Methods for the details). Negative spatial proximity values
correspond to fragments distant from each other, positive values
correspond to proximal fragments. The whisker boxes show quartiles,
median (the line in the box), min and max values (the lines outside the
box).
doi:10.1371/journal.pone.0033947.g001

Figure 2. Histogram of the number of pairs of interacting
genome fragments originating at different chromosomes in
the human genome-wide spatial proximity matrix C.
doi:10.1371/journal.pone.0033947.g002

Spatial Proximity and Epigenetic State
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Similarity of epigenetic marks in spatially proximal
domains

We tested whether frequently interacting fragments have a

similar level of histone modifications, methylation state, DNAse

sensitivity, and expression using the data from several high-

throughput studies (see ‘‘Methods’’). All these features have a

similar data structure that is represented by markers along the

genome. Being measured, each marker is characterized by a peak

of a defined width and height (signal). To measure signal strength

S(i) over each 1-Mb fragment i, we multiplied the height of each

peak (Hk) by the fraction of the fragment i intersecting with the

peak (Wk), and then summed up the results for all peaks 1:::n in

the locus i:

S(i)~
Xn

k~1

(Hk
:Wk) ð1Þ

Though some epigenetic marks are punctual (such as H3K4me3 at

the promoter region) while others denote domains (such as

H3K36me3 throughout the gene body), their fine structure is

unlikely to affect the signal strength S(i) value at the coarse 1-Mb

resolution. The difference D(i,j) of signal strength between two

interacting fragments i and j was calculated as:

D(i,j)~Dlog
S(i)

S(j)D ð2Þ

This definition does not depend on the order of the considered

fragments; the signal values are non-negative, and hence the

logarithm is well-defined.

The median D(i,j) value was calculated for each considered

interval of spatial proximity in the correlation matrix C. These

values correlate with the spatial proximity values for each data

type we tested: expression level (Fig. 3A, Spearman’s rho = {0:96,

p-value = 6:0e{6), histone modifications (Fig. 3B,Fig. S2, average

Spearman’s rho = {0:85, average p-value = 4:1e{4), DNA meth-

ylation (Fig. 3C, Spearman’s rho = {0:92, p-valuev2:2e{16),

DNAse sensitivity (Fig. 3D, Spearman’s rho = {0:93, p-

valuev2:2e{16). UCSC snapshots of examples for the each

evaluated feature are shown in Fig. S3.

The same procedure was repeated for the contact enrichment

matrices M* and D. Spatial proximity values were divided into 29

intervals (Fig. S4). As for the contact matrix C, 18 central intervals

were selected for further analysis. Both matrices M* and D
demonstrate strong correlations with the spatial proximity values

for each data type we tested: expression level (Fig. S5A and S6A,

Spearman’s rho = {0:99 and {0:93, p-value = 9:9e{6 and

v2:2e{16 for M* and D, respectively), histone modifications

(Fig. S5B and S6B, average Spearman’s rho = {0:64 and {0:67,

average p-value = 0:09 and 0:09), DNA methylation (Fig. S5C and

S6C, Spearman’s rho = {0:85 and {0:53, p-value = 1:0e{5 and

0:02), DNAse sensitivity (Fig. S5D and S6D, Spearman’s

rho = {0:85 and {0:92, p-value v2:2e{16 and 2:2e{16). As all

three matrices C, M* and D show approximately the same results,

we selected only one of them, matrix C, for further analysis.

Functional similarity of genes in spatially proximal
domains

To check if the observed correlations can be extended to the

Gene Ontology level, we studied semantic similarity of GO terms

between interacting genome fragments. Each 1-Mb fragment was

assigned a list of GO terms corresponding to genes of this

fragment. To calculate the average GO semantic similarity

between 1-Mb fragments i and j, we composed an m-by-n matrix

G for each pair of fragments i and j, where m is the length of GO

term list for the fragment i, and n is the length of GO term list for

the fragment j. Elements of the matrix G were calculated with the

package GOSemSim [21], which computes the semantic similarity

between two GO terms using Wang’s graph-based algorithm [22].

Then the average value of the matrix G was calculated.

The procedure described above was repeated for the Molecular

Function, Biological Process and Cellular Component hierarchies

separately. The average GO semantic similarity appeared to

correlate with the spatial proximity values for all GO hierarchies

(Fig. 4A–C, Spearman’s rho = 0:78, 0:65, 0:98, p-value = 2:1e{4,

4:3e{3, 8:4e{6, respectively), with the highest correlation

coefficient for the Cellular Component hierarchy.

Co-expression of genes in spatially close fragments
We also studied co-expression of spatially close fragments. The

COXPRESdb database [23] was used as a source of the co-

expression data. To measure average co-expression E(i,j) for two

interacting 1-Mb genome regions i and j, we used formula [3] for

all gene pairs 1:::n linked in COXPRESdb:

E(i,j)~
Xn

k~1

Wki

Nj

z
Wkj

Ni

� �
:Rk, ð3Þ

where Wki is the fraction of the 1-Mb locus i intersecting with the

first gene of the linked pair k, Wkj is the fraction of the 1-Mb locus

j intersecting with the second gene of the pair k, Ni is the number

of genes in the locus i, Nj is the number of genes in the locus j, Rk

is Pearson’s correlation coefficient between expression profiles of

the linked gene pair k.

The median E(i,j) value was calculated for each considered

interval of spatial proximity. A strong correlation with the spatial

proximity values was observed (Fig. 5, Spearman’s rho = 0:93, p-

valuev2:2e{16).

Consistency with the two-compartment chromatin
model

According to the two-compartment chromatin model provided

by [4], the entire genome can be partitioned into two spatial

compartments: compartment A associated with open, accessible,

actively transcribed chromatin, and compartment B with the

opposite characteristics. To test for the consistency with this

model, we produced a control dataset in which we shuffled only

gene names within the two compartments independently while

retaining gene positions to keep gene-rich and gene-poor genome

domains intact (see ‘‘Methods’’). Such type of the control dataset

was applied because there is a correlation between the gene

content and the spatial proximity of genome domains (Fig. S7,

Spearman’s rho = 0:76, p-value = 3:4e{4). Hence one could

suppose that the observed similarity of epigenetic marks in

spatially proximal domains might be caused by their location in

the gene-rich open chromatin compartment. Our control dataset

keeps gene content and compartments intact, yet correlations drop

considerably (average Spearman’s rho = {0:67, average p-

value = 0:002, compare to {0:91 and 1:2e{4, respectively, for

the initial dataset), meaning that the observed epigenetic similarity

of spatially proximal fragments cannot be simply explained by

either their common origin from the same chromatin compart-

Spatial Proximity and Epigenetic State
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ment or the higher gene content. Moreover, in the shuffled dataset

the entire profile of the dependency between the spatial proximity

values and the evaluated epigenetic features looks completely

different. The D(i,j) difference values increase several-fold for

spatially proximal fragments (0:50v~c(i,j)v~0:55) and de-

crease for spatially distant ones ({0:30v~c(i,j)v~{0:25). See

an example for the expression level difference in Fig. 6).

Additionally, we divided pairs of interacting 1-Mb fragments

from different chromosomes into three groups: (1) both fragments

are in the closed-chromatin compartment; (2) both fragments are

in the open-chromatin compartment; (3) the fragments are in the

different compartments. The main calculations were repeated for

these groups independently and it appeared that epigenetic

similarity of spatially proximal fragments is observed in each of

the three groups and does not depend on the compartment of

origin (Fig. S8).

Spatially proximal domains share chromatin state
patterns

We then considered ‘chromatin states’, biologically-meaningful

combinations of chromatin marks [12]. To compare chromatin

state profiles between two interacting 1-Mb fragments, we assigned

a vector of length n, where n~51 is the number of chromatin

states, to each 1-Mb fragment. Element k was defined as the

fraction of the 1-Mb fragment annotated as k-th chromatin state,

k~1::n. Similarity of two such vectors i and j was calculated using

the Jaccard similarity coefficient as:

J(i,j)~

Pn
k~1

min(ik,jk)

Pn
k~1

max(ik,jk)

ð4Þ

Figure 3. Correlations of the spatial proximity values with expression (A), histone modifications (B), DNA methylation (C), and
DNAse sensitivity (D) differences. The whisker boxes (A,C,D) are as in Fig. 1. Symbols in B show the medians for different histone modifications;
the whisker boxes for all modifications are given in Fig. S1.
doi:10.1371/journal.pone.0033947.g003

Spatial Proximity and Epigenetic State
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Fig. 7 shows that the spatial proximity values are strongly

correlated with the Jaccard similarity of chromatin state profiles

(Spearman’s rho = 0:99, p-value = 9:6e{6).

Spatial clustering yields functionally homogeneous
domains

DNA fragments in the spatial proximity map were clustered into

several groups (4, 8, 16, 32, and 64 groups; see Table S2) by

Ward’s minimum variance method [24] in the R environment

[25]. For each cluster, we calculated spatial proximity between all

possible pairs of DNA fragments within the cluster (Fig. 8A for

DNA fragments clustered into 16 groups); spatial proximity

between each DNA fragment within the cluster and each DNA

fragment outside the cluster (Fig. 8B); expression level, histone

modifications, DNA methylation, DNAse sensitivity, and their

differences within the cluster (Fig. 8C–H,Fig. S9). See Fig. S10,

S11, S12, S13 for DNA fragments clustered into 4, 8, 32, and 64

groups, respectively.

The results show that the median spatial proximity between

DNA fragments within the cluster is anti-correlated with the

median spatial proximity between DNA fragments within and

outside the cluster (Pearson’s correlation coefficient = {0:66, p-

value = 0:005). One may conclude from Fig. 8A and B that some

clusters (‘compact clusters’) have high spatial proximity values

within a cluster, being located at a distance from the remaining

clusters in the nucleus, while other clusters (‘loose clusters’) have

low spatial proximity values within a cluster, being located at more

or less average distance from the remaining clusters. Moreover,

the compact clusters are actively transcribed because expression,

histone modifications, and DNAse sensitivity levels are higher in

these clusters, while the methylation level is lower. On the

contrary, average differences in expression, histone modifications,

and DNAse sensitivity are lower in compact clusters, meaning that

the genome fragments in these clusters have not only high but also

similar levels of expression, histone modifications and DNAse

sensitivity.

Fig. S14 demonstrates that compact clusters have slightly higher

linear proximity within a cluster than other clusters as the spatial

proximity is weakly correlated with the linear proximity within a

cluster (Pearson’s correlation coefficient = 0:48, p-value = 0:06).

Figure 4. Correlation of the spatial proximity values with the Gene Ontology semantic similarity of the genes located in the
interacting genome fragments. (A) Molecular Function. (B) Biological Process. (C) Cellular Component. Black squares show average GO similarity
values, dashed lines, standard deviations.
doi:10.1371/journal.pone.0033947.g004

Figure 5. Correlation of the spatial proximity values with
COXPRESdb co-expression values. Whisker boxes are as in
Fig. 1.
doi:10.1371/journal.pone.0033947.g005

Figure 6. Correlations of the spatial proximity values with the
expression level difference in the initial dataset and in the
shuffled dataset.
doi:10.1371/journal.pone.0033947.g006

Spatial Proximity and Epigenetic State
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This observation can be explained by a slightly higher number of

the genome fragments originating at the same chromosome in

compact clusters.

Functional similarity implies spatial proximity
To characterize further the relationship of the chromatin

properties with the spatial proximity, we built linear regression

models, which predict spatial proximity of a pair of fragments

using the differences and averages of signal strength in these

fragments, the signal set comprising all 12 studied chromatin

properties. Accuracy of each model was estimated by two-fold

cross-validation and compared with the accuracy of a naive

algorithm that produces the average spatial proximity on the

training set as the predicted value. The difference of the signal

strengths was computed using (2), the average was computed as:

S(i,j)~log(S(i):S(j))=2 ð5Þ

Calculations showed that the use of the D(i,j) values

(differences) results in significant accuracy gains over the naive

algorithm for all properties (Table S1). The use of S(i,j) values

(averages) also yielded significant accuracy gain for all properties

except histone modifications H3K27me3, H3K4me2, H3K4me3.

For H4K20me1, expression, DNAse sensitivity and methylation

state the accuracy gain is higher with averages than with

differences. The spatial proximity is anti-correlated with all

differences and is positively correlated with all averages except

methylation, meaning that the spatially proximal genome

fragments are actively transcribed and have similar epigenetic

marks, while spatially distant fragments have opposite character-

istics.

Further, regression models, which simultaneously use one

through 24 difference and average values of all properties as

features, were built. Features were added successively either in

order of decreasing accuracies of single-feature models, or by the

greedy algorithm, which adds the features that yield the highest

accuracy gain on every iteration. The root mean squared error

(RMSE) values of models on the testing set for various feature sets

are presented in Fig. 9. The maximal decrease of the prediction

error during successive feature selection was obtained when the

first four stably selected (i.e. added at the first four steps for all

considered sample splits, see Methods) features were used. These

features are the averages and differences of DNAse sensitivity and

H4K20me1 modification. Further addition of features leads to

slow decrease of the prediction error until the addition of the 18th

feature. After that the prediction quality does not change.

However, for different sample splits, different features are added.

The greedy feature selection reaches the plateau faster: the error

stops decreasing after addition of the 8th feature. Most frequently

selected features are the differences and averages of DNAse

sensitivity, histone modification H4K20me1, CTCF density,

methylation state. However, only the first three features are stably

selected. These features are the same as leaders of successive

selection, excluding the H4K20me1 averages.

To control for the consistency with the two-compartment

chromatin model provided by [4], we divided pairs of interacting

1-Mb fragments from different chromosomes into three groups: (1)

both fragments are in the closed-chromatin compartment; (2) both

fragments are in the open-chromatin compartment; (3) the

fragments are in the different compartments. The regression

models were built for these groups independently, and similar

results were observed in each of the three groups (Fig. S15, S6,

S17). Hence, one can conclude that the similarity of functional

states may be used to predict the spatial proximity of fragment

pairs, independently of the compartment of origin.

To visualize the relation between the spatial proximity and

features and the regression models, plots of aggregated sample

values were built (Fig. S18, S19, S20, S21, S22, S23, S24, S25).

The aggregation was performed by ordering all pairs of fragments

by the increase of the value of the considered feature, grouping all

pairs successively according to this order (a group size was set to

50000 pairs) and then averaging feature and proximity values of all

members of each group (which results in 15 points for each

feature). The model parameters were estimated on the full sample

and corresponding lines were added on the plots.

Spatially close fragments produce chimeric RNAs
To retrieve candidate chimeric RNAs, paired reads of three

transcriptomic RNA-Seq datasets (brain tissue [26], lymphoblas-

toid cell line GM12878 [27], and erythroleukemia cell line K562

[28]) were mapped to the human reference genome and to all

possible intragenic splice junctions (see ‘‘Methods’’). Chimeric

pairs consisting of reads that map to different chromosomes were

selected for further analysis. There were 431321 such pairs for the

brain tissue sample, 907368 pairs for the GM12878 cells, and

361487 pairs for the K562 cells.

We tested the brain tissue, GM12878 and K562 data against the

chromatin spatial proximity matrix. Eighteen intervals of the

spatial proximity values were considered. For each interval, we

calculated the fraction of fragment pairs in which we observed

chimeric read pairs. To make different datasets comparable, this

value was further divided by the total number of chimeric pairs in

the sample. All three datasets show significant correlations

between the frequency of chimeric RNAs and the spatial

proximity (Spearman’s rho = 0:88, 0:94, 0:85, p-valuev2:2e{16,

1:7e{6, 2:2e{16, respectively), in comparison to the corresponding

control datasets (Fig. 10A). The control datasets were produced by

re-pairing of each read with a random read on a different

chromosome (see Methods for details). The observed weak

correlation between the chimeric RNA production in the brain

tissue and the spatial proximity values in the lymphoblastoid cell

line is quite remarkable because this could mean that the three-

dimensional architecture of chromosomal interactions is, at least

Figure 7. Correlation of the spatial proximity values with the
similarity of chromatin state profiles. Whisker boxes are as in
Fig. 1.
doi:10.1371/journal.pone.0033947.g007

Spatial Proximity and Epigenetic State
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Figure 8. DNA fragments clustered into 16 groups. (A) spatial proximity between all possible pairs of DNA fragments within the cluster; (B)
spatial proximity between each DNA fragment within the cluster and each DNA fragment from the remaining set; (C,E,G) expression, DNAse
sensitivity, and DNA methylation levels within the cluster; (D,F,H) expression, DNAse sensitivity, and DNA methylation differences within the cluster.
See Fig. S10, S11, S12, S13 for DNA fragments clustered into 4, 8, 32, and 64 groups, respectively.
doi:10.1371/journal.pone.0033947.g008

Spatial Proximity and Epigenetic State
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partially, similar in such diverse cells as lymphoblasts (even

represented by different cell lines) and neurons.

The observed correlations in both datasets could be caused by

(at least) two reasons: trans-splicing and genome rearrangement.

To test these possibilities we analyzed the data on genome trans-

chromosomal rearrangements from [29] and observed no increase

in the number of chimeric pairs among spatially close regions

(Fig. 10A). Hence, there remains a distinct possibility that the

observed chimeric transcripts indeed originate from trans-splicing.

Figure 9. The root mean squared error (RMSE) of the spatial proximity prediction with standard deviations (SD) (all values were
estimated on the testing set for each split and averaged) of regression models, which used one through 24 features, selected by
two algorithms: Successive (successive selection based on individual accuracy) and Greedy (greedy forward feature selection), and
the RMSE with SD of an algorithm, which always uses the training set mean as the predicted value. Additional information about used
features can be found in Table S1.
doi:10.1371/journal.pone.0033947.g009

Figure 10. Correlation between chimeric RNA production and spatial proximity values for (A) the K562 cell line, the GM12878 cell
line, and the brain tissue sample (red, orange and green triangles, respectively); the genomic rearrangement dataset (shown in
blue); the shuffled control K562 dataset (red whisker boxes); the shuffled control GM12878 dataset (orange whisker boxes); the
shuffled control brain dataset (green whisker boxes) and (B) three ChimerDB datasets: mRNA, EST and SRA-derived (red, blue and
green dots, respectively).
doi:10.1371/journal.pone.0033947.g010

Spatial Proximity and Epigenetic State
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In the same way, we also associated the spatial proximity values

with the ChimerDB database [30] that contains chimeric

transcripts collected from various public resources. Fig. 10B shows

that the spatial proximity values correlate with the production of

chimeric transcripts derived from all three data sources (EST,

SRA, mRNA) available in ChimerDB (Spearman’s rho = 0:93,

0:97, 0:70, p-value v2:2e{16, 7:8e{12, 0:001, respectively).

Discussion

The observed correlations between the spatial proximity of

genome regions and a variety of their functional characteristics

seem to demonstrate the presence of co-regulated genome

domains formed by regions of different chromosomes. All

correlations are significantly higher than in corresponding control

datasets.

Our choice of the control procedure stemmed from the

possibility that the observed correlations of the expression level

and other characteristics with the spatial proximity could be

explained by the fact that there are two types of chromatin foci,

loose gene-poor and dense gene-rich ones. One could suppose that

gene-poor 1-Mb genomic fragments are located far from other

chromosomal regions and their median D(i,j) values would

consequently strongly differ from the median D(i,j) values of

gene-rich 1-Mb fragments. Indeed, we observed a correlation

between the gene content and the spatial proximity of genome

domains. This correlation could further lead to a correlation

between spatial proximity and median histone modifications,

methylation state, DNAse hypersensitivity, and expression D(i,j)
values.

However, the control procedure, implemented here, shuffles

only gene names and does not affect the gene content. Yet we

observe significantly higher correlations in the original, non-

shuffled datasets than in the control. It means that the non-

uniformity of the gene content only partially explains the observed

correlations. It seems that genome domains with similar functional

patterns, located on different chromosomes, tend to be spatially

close to each other so that they can share transcription factories.

This association does not depend solely on the chromosomal

territories or the local gene content.

Correlation between the gene content and the spatial proximity

agrees with the existing understanding of the chromatin

organization in the interphase nucleus. It is widely accepted that

active gene-rich chromosome regions assume more interior

positions in the nucleus, whereas the nuclear periphery generally

harbors mainly gene-poor chromosome regions [31]. Hence, one

could assume that transcriptionally active gene-rich regions would

tend to locate near other gene-rich regions, even if the latter are

located on a different chromosome, sharing their transcription

machinery, factors and regulatory elements. Therefore, these

interacting loci could easily have similar chromatin state.

However, our observations cannot be reduced to this simple

explanation. In the control dataset, gene names were shuffled

within the open/closed chromatin compartments independently,

according to the annotation provided by [4]. If the open/closed

chromatin model was sufficient, one would expect to find high

correlations with the epigenetic features in the control dataset. Yet

weak correlations were observed. Moreover, spatially proximal

fragments have more similar epigenetic state than distant ones,

independent on the compartment of origin (both fragments are in

the closed-chromatin compartment, both fragments are in the

open-chromatin compartment, or both fragments are in the

different compartments). It proves that the observed presence of

co-regulated genome domains formed by regions of different

chromosomes cannot be simply explained by their common origin

from the open-chromatin compartment. Interestingly, the first

group (both fragments are in the closed-chromatin compartment)

demonstrates low similarity of the epigenetic state at high spatial

proximity values, which is expected as closed chromatin regions

are transcriptionally inactive and unlikely to share transcription

factors, regulatory or other elements of the transcription

machinery.

Additionally, when the chromosomal regions were clustered by

spatial proximity, two general types of functional regions emerged.

Compact clusters with high spatial proximity between fragments

within a cluster and relatively low spatial proximity with regions

belonging to other clusters were characterized by higher

expression rates, histone modification and DNAse sensitivity

levels, while the level of methylation in such clusters was lower.

Loose clusters with low spatial proximity between fragments had

opposite characteristics. Compact clusters likely correspond to the

foci of active transcription (transcription factories). At that, it

should be recalled that in all our analyses we considered only pairs

whose constituents originated at different chromosomes, and thus

these results do not depend on the local, linear proximity along a

chromosome. As an additional check, we calculated the linear

proximity within the clusters and it appeared to correlate with the

spatial proximity only weakly (not significant at the 5% confidence

level).

The linear regression analysis revealed that the similarity of

functional states may be used to predict the spatial proximity of

fragment pairs. At that, both averages and differences of the

parameters of paired fragments are important, measuring the

overall state and the differences that reflect functional homoge-

neity. The most informative features for such analysis are the

DNAse sensitivity and, surprisingly, the histone modification

H4K20me1, followed by the CTCF density and the methylation

state. While the DNAse sensitivity, the CTCF density, and the

methylation state are known to be associated with the chromatin

structure and transcription activity [8,9], the function of the

H4K20me1 mark is not yet well-established.

There is evidence that H4K20me1 can be important for

programmed genomic rearrangements [32]. Also, the N tail of

histone H4 is essential for the chromatin structure packing [33],

and only lysine 20 can be methylated in mammalian cells. The

relationship between the H4K20me1 mark and the transcription

activity remains controversial [34]. There are studies that link

H4K20me1 with the transcription level [35,36] and several papers

demonstrate strong dependency between the H4K20me1 mark

and the transcriptional repression [37,38]. Most likely,

H4K20me1 is a very dynamic histone modification and can play

different roles at the different cell-cycle stages. The strong

correlation between the H4K20me1 mark and the spatial

proximity observed here is yet another evidence of H4K20me1

involvement in both chromatin structure and gene expression

regulation.

The chimeric RNAs are a popular subject, as most of them are

known to be produced by cancer cells [39]. However, evidence of

chimeric RNAs in normal cells is also starting to emerge [40]. The

origin of the chimeric RNA molecules is not clear yet. There are at

least three possibilities: genomic rearrangements relative to the

reference genome, trans-splicing, and cloning or sequencing

artifacts. It seems that all these sources contribute to the

accumulated chimeric RNA data [14]. Here we demonstrate a

possibility of trans-splicing. Indeed, the analysis of the genomic

data shows that genomic rearrangements cannot explain the

observed frequency of chimeric RNAs.
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Further, the generation of chimeric RNAs in eukaryotes is

known to be strongly associated with short homologous sequences

at chimeric RNA junction sites [41]. Hence, the control for

sequencing artifacts, implemented here for the spatial proximity

map validation, is also relevant to the chimeric RNAs. As identity

levels are not elevated in all considered intervals of spatial

proximity, we believe that sequencing artifacts do not influence

chimeric RNA production significantly. Hence, the observed

chimeric transcripts may originate, at least partially, from trans-

splicing between different chromosomes.

The observed correlations between the spatial proximity values

and the production of chimeric transcripts retrieved from

ChimerDB are quite remarkable. ChimerDB is the most complete

and up-to-date knowledgebase of fusion transcripts collected from

a variety of tissues. The strong correlations with the spatial

proximity values for the lymphoblastoid cell line most likely mean

that the three-dimensional architecture of chromosomal interac-

tions is sufficiently similar for different cell types to retain the

observed correlation. Indeed, interchromosomal spatial proximity

values for the lymphoblastoid cell line GM06990 and erythroleu-

kemia cell line K562 are strongly correlated (Pearson’s correlation

coefficient = 0:54, p-valuev2:2e{16). Moreover, we observed a

strong correlation between the spatial proximity values and the

chromatin state profiles though the chromatin states were

annotated for CD4 T-cell line.

This allows us to conclude that the 3D structure of the nuclear

chromatin seems to demonstrate consistent patterns throughout

the human body and contains co-regulated genome domains

formed by regions of different chromosomes that share various

epigenetic features, have equally high expression level and can

produce fusion transcripts.

Methods

Chromatin functional states
Results of several high-throughput studies were used to retrieve

the chromatin functional state data. Expression data for the

lymphoblastoid cell line GM06690 were obtained from [4].

Histone modifications, methylation state, and DNAse sensitivity

data were obtained from the ENCODE project for the

lymphoblastoid cell line GM12878 [27]. Spatial proximity values

were extracted from the genome-wide spatial proximity map for

the lymphoblastoid cell line GM06990 [4].

Genome-wide annotation of ‘chromatin states’, or biologically-

meaningful combinations of chromatin marks, was derived from

[12]. The annotation included 51 chromatin states and was based

on a set of 38 different histone methylation and acetylation marks

in human CD4 T-cells, as well as histone variant H2AZ, PolII, and

CTCF5.

Two datasets of human transcriptomic samples (brain tissue

[26] and erythroleukemia cell line K562 [28]), as well as the

ChimerDB database [30] were used to retrieve candidate chimeric

RNAs. To do that, paired reads were mapped to the human

reference genome (version hg18) and to all possible intragenic

splice junctions with the SOAP program [42].

3D chromosomal interactions
In the spatial proximity map M of the human genome,

constructed by the Hi-C method [4], an entry m(i,j) is defined to

be the number of ligation products between fragments i and j. In

[4], the matrix M was normalized for coverage and a new matrix

M* was produced. Only fragment pairs originating at different

chromosomes were considered. The expected number of interac-

tions between each fragment pair i,j was computed by multiplying

the fraction of reads containing i by the fraction of reads

containing j and multiplying by the total number of reads. The

enrichment was computed by taking the actual number of

interactions observed between fragment i and fragment j, m(i,j),
and dividing it by this expected value. To improve the resolution,

the correlation matrix C, in which c(i,j) is Pearson’s correlation

coefficient between the i-th row and the j-th column of M*, has

been constructed.

Control procedures
To control for the influence of gene-rich and gene-poor genome

domains, we shuffled gene names, while retaining gene positions.

This procedure rearranges signal values only and does not affect

correlations between the spatial proximity and the gene content in

pairs of genome regions. According to the open/closed chromatin

annotation provided by [4], we assigned each gene to a chromatin

compartment containing the start of the coding region of this gene,

and shuffled gene names only within the same compartment.

For the chimeric RNA dataset, the following control procedure

was applied. Each read pair, consisting of reads mapping to the

same chromosome, was unpaired. The unpaired reads were

randomly paired with unpaired reads on a different chromosome.

The resulting dataset, consisting of artificial chimeric RNAs, also

retains the original gene content, as the local read coverage is not

changed.

Regression models and feature selection
Ridge regression models [43] were used as the regression model.

To estimate the models’ accuracy, the list of studied fragments was

randomly split in two equal parts, one used to build the training

set, and the other, the testing set. Then these parts were

exchanged. The splitting was repeated 100 times. At each split,

fragment pairs with both members belonging to the training or

testing list, were used as the training and testing sets, respectively.

The root mean squared deviation of the predicted value from the

real spatial proximity (RMSE) was computed on the testing set.

Then, all error values obtained for different sample splits were

averaged. The splits were fixed during testing of all algorithms. To

compare the regression accuracy with the accuracy of prediction

based on the average value, p-values of paired, two-sample, two-

tailed T-test with the Bonferroni correction for multiple compar-

isons were used. P-values ƒ10{10 were considered significant. For

successive feature selection, the training set was randomly split in

two equal parts. The regression model was trained on one part for

each feature, and the model accuracy was estimated on the other

part. The splitting was repeated 10 times. After that, all features

were ordered by the increase of average RMSE. During the

greedy selection, sample splits and accuracy estimation were done

in the same way. At the i-th iteration, all features, not belonging to

the list of already selected features of length i{1, were added to

this list one at a time, the regression models were trained using the

obtained feature lists of length i, and the prediction error was

computed on the testing set. The list yielding the model with the

smallest average error was selected as the current list of the

selected features of length i. The selection stability was estimated

by frequencies of k most frequently selected features in the lists of

length k (for all k). A feature was considered to be stable if its

frequency was close to one.

Supporting Information

Figure S1 The average repeat content in 29 considered
intervals of the spatial proximity in the the genome-wide
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correlation matrix C. (A) Simple repeats. (B) Nested repeats.

(C) Exapted repeats.

(TIFF)

Figure S2 Correlations of the spatial proximity values
with histone modifications differences. All notations are
as in Fig. 3.

(TIFF)

Figure S3 Examples of spatially proximal (chr3:49000000–

49999999 and chr11:66000000–66999999, spatial proximi-

ty = 0.54) and spatially distant (chr3:49000000–49999999 and

chr4:164000000–164999999, spatial proximity = 20.25;

chr4:164000000–164999999 and chr11:66000000–66999999,

spatial proximity = 20.22) fragments. Spatially proximal frag-

ments have similar epigenetic features, while spatially distant have

rather different ones.

(TIFF)

Figure S4 Histograms of the number of pairs of the
interacting genome fragments originating at different
chromosomes in the human genome-wide spatial prox-
imity matrices M* (A) and D (B). Low spatial proximity

values correspond to the fragments distant from each other, high

values correspond to proximal fragments.

(TIFF)

Figure S5 Correlations of the spatial proximity values
in the matrix M* with expression (A), histone modifica-
tions (B), DNA methylation (C), and DNAse sensitivity
(D) differences. Symbols in B show the medians for
different histone modifications. Other notations are as in

Fig. 3.

(TIFF)

Figure S6 Correlations of the spatial proximity values
in the matrix D with expression (A), histone modifica-
tions (B), DNA methylation (C), and DNAse sensitivity
(D) differences. Symbols in B show the medians for
different histone modifications. Other notations are as in

Fig. 3.

(TIFF)

Figure S7 Correlations of the spatial proximity values
with the gene density. All notations are as in Fig. 3.

(TIFF)

Figure S8 Correlations of the spatial proximity values
by compartments with expression, DNA methylation,
DNAse sensitivity and various histone modification
differences. AA denotes the pairs with both fragments
in open chromatin compartment, BB, both fragments
are in closed chromatin compartment; AB, fragments
are in different compartments. Other notations are as in

Fig. 3.

(TIFF)

Figure S9 Histone modifications and their differences
within the cluster. DNA fragments clustered into 16
groups. All notations are as in Fig. 3.

(TIFF)

Figure S10 DNA fragments clustered into 4 groups. (A)

cluster size; (B) distances between all possible pairs of DNA

fragments within the cluster; (C) distances between each DNA

fragment from the cluster and each DNA fragment from the

remaining set; (D-F) expression, DNA methylation, and DNAse

sensitivity levels within the cluster; (G-I) expression, DNA

methylation, and DNAse sensitivity differences within the cluster.

(TIFF)

Figure S11 DNA fragments clustered into 8 groups. (A)

cluster size; (B) distances between all possible pairs of DNA

fragments within the cluster; (C) distances between each DNA

fragment from the cluster and each DNA fragment from the

remaining set; (D-F) expression, DNA methylation, and DNAse

sensitivity levels within the cluster; (G-I) expression, DNA

methylation, and DNAse sensitivity differences within the cluster.

(TIFF)

Figure S12 DNA fragments clustered into 32 groups. (A)

cluster size; (B) distances between all possible pairs of DNA

fragments within the cluster; (C) distances between each DNA

fragment from the cluster and each DNA fragment from the

remaining set; (D-F) expression, DNA methylation, and DNAse

sensitivity levels within the cluster; (G-I) expression, DNA

methylation, and DNAse sensitivity differences within the cluster.

(TIFF)

Figure S13 DNA fragments clustered into 64 groups. (A)
cluster size; (B) distances between all possible pairs of
DNA fragments within the cluster; (C) distances between
each DNA fragment from the cluster and each DNA
fragment from the remaining set; (D-F) expression, DNA
methylation, and DNAse sensitivity levels within the
cluster; (G-I) expression, DNA methylation, and DNAse
sensitivity differences within the cluster.

(TIFF)

Figure S14 The linear proximity values within the
clusters. The linear proximity values were calculated as 1

divided by the distance between the centers of interacting

fragments in Mbases if the fragments were located on the same

chromosome, and were equal 0 otherwise. Means represented by

dots, standard deviations, by lines. The upper row of figures

represents corresponding spatial proximity values, for comparison.

The whisker boxes are as in Fig. 3.

(TIFF)

Figure S15 The root mean squared error (RMSE) of the
spatial proximity prediction for the pairs of genome
fragments originating at the open chromatin compart-
ment (AA). All notations are as in Fig. 9.

(TIFF)

Figure S16 The root mean squared error (RMSE) of the
spatial proximity prediction for the pairs of genome
fragments originating at the closed chromatin compart-
ment (BB). All notations are as in Fig. 9.

(TIFF)

Figure S17 The root mean squared error (RMSE) of the
spatial proximity prediction for the pairs of genome
fragments originating at different compartments (AB).
All notations are as in Fig. 9.

(TIFF)

Figure S18 Spatial proximity values plotted against
sums of expression values. Markers represent aggregated

sample values, the line visualizes the regression model.

(TIFF)
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Figure S19 Spatial proximity values plotted against
sums of DNAse sensitivity values. Markers represent

aggregated sample values, the line visualizes the regression model.

(TIFF)

Figure S20 Spatial proximity values plotted against
sums of methylation state values. Markers represent

aggregated sample values, the line visualizes the regression model.

(TIFF)

Figure S21 Spatial proximity values plotted against
sums of histone modifications values. Markers represent

aggregated sample values.

(TIFF)

Figure S22 Spatial proximity values plotted against
differences of expression values. Markers represent aggre-

gated sample values, the line visualizes the regression model.

(TIFF)

Figure S23 Spatial proximity values plotted against
differences of DNAse sensitivity values. Markers represent

aggregated sample values, the line visualizes the regression model.

(TIFF)

Figure S24 Spatial proximity values plotted against
differences of methylation state values. Markers represent

aggregated sample values, the line visualizes the regression model.

(TIFF)

Figure S25 Spatial proximity values plotted against
differences of histone modifications values. Markers
represent aggregated sample values.
(TIFF)

Table S1 The RMSE of regression models, which use one

feature separately to predict spatial proximity, compared to the

RMSE of the algorithm which uses training set mean as the

predicted value. The significance of the difference between each

feature-based model and the mean-based algorithm was estimated

by p-values of paired, two-sample, two-tailed T-test with the

Bonferroni correction, which are shown right to the corresponding

model errors. Bold font shows features, for which the regression

models have larger error than the mean-based algorithm. Italic

font shows non-significant differences.

(PDF)

Table S2 The list of DNA fragments clustered into 4, 8, 16, 32,

and 64 groups by the spatial proximity.

(XLS)
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