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ABSTRACT

Identification of transcriptional regulatory regions
and tracing their internal organization are important
for understanding the eukaryotic cell machinery.
Cis-regulatory modules (CRMs) of higher eukaryotes
are believed to possess a regulatory ‘grammar’, or
preferred arrangement of binding sites, that is
crucial for proper regulation and thus tends to be
evolutionarily conserved. Here, we present a
method CORECLUST (COnservative REgulatory
CLUster STructure) that predicts CRMs based on a
set of positional weight matrices. Given regulatory
regions of orthologous and/or co-regulated genes,
CORECLUST constructs a CRM model by revealing
the conserved rules that describe the relative
location of binding sites. The constructed model
may be consequently used for the genome-wide pre-
diction of similar CRMs, and thus detection of
co-regulated genes, and for the investigation of the
regulatory grammar of the system. Compared with
related methods, CORECLUST shows better per-
formance at identification of CRMs conferring
muscle-specific gene expression in vertebrates and
early-developmental CRMs in Drosophila.

INTRODUCTION

The identification of transcriptional regulatory elements is
a key point for the understanding of complexity and de-
velopment of living organisms. The main transcriptional

regulation mechanism in a living cell is provided by tran-
scription factors (TFs) that bind the DNA at their binding
sites (TFBSs) and thus activate or repress the transcrip-
tion. The spatial and temporal specificity in gene expres-
sion is achieved by interaction of TFs that yield different
expression patterns. In higher eukaryotes, TFBSs tend to
be rather short (5–15 bp) and degenerate and they are
often spread in extensive non-coding regions. So, thou-
sands of potential binding sites could be found just by
chance due to the size of the eukaryotic genomes.
Fortunately, TFBSs tend to cluster along the DNA

strand and thus to form cis-regulatory modules (CRMs).
Moreover, numerous evidence shows that, in higher eu-
karyotes, binding sites often form so-called composite
elements (1), which are groups of sites in a specific arrange-
ment. The process of formation of a regulatory complex by
the TFs sets constraints on this arrangement, defining the
grammar, or structure, of the CRMs. Identical patterns of
composite elements are assumed to have similar functions
in regulatory modules of different genes.
The observation of the TFBSs’ tendency to cluster

inspired numerous computational approaches to the iden-
tification of CRMs in eukaryotic genomes. Many of them
start from known motifs represented by position weight
matrices (PWMs). Early methods scan a query sequence
and detect local clustering of sites representing the input
motifs (2–4), typically ignoring the regulatory grammar,
i.e. sites order and spacing. Other methods use the hidden
Markov model (HMM) for CRM prediction (5–7). Major
advantages of the HMM approach are the statistically
reliable measure for the CRMs occurrence (8) and the
possibility to account for the regulatory grammar of
CRM (9,10). Moreover, the use of the expectation

*To whom correspondence should be addressed. Tel: +7 495 9391459; Fax: +7 495 9394195; Email: nikanka@bioinf.fbb.msu.ru

Published online 15 March 2012 Nucleic Acids Research, 2012, Vol. 40, No. 12 e93
doi:10.1093/nar/gks235

� The Author(s) 2012. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



maximization algorithm allows one to adjust a large set of
parameters computationally rather than manually.
An important and widely used source of data for the

CRM prediction is the interspecies comparison (3,4,9,11).
However, most methods are based on pairwise or multiple
sequence alignments and thus they fail when the regula-
tory regions are not well alignable (12,13). To work
around this problem, Hallikas et al. (14) proposed the al-
gorithm called EEL that aligns significant motif occur-
rences rather than the sequences; thus, this method does
not rely on the raw sequence similarity. However, the EEL
processes only two sequences at a time. Moreover, it
assumes that TFBSs in the conserved CRMs occur
strictly in the same order. A different approach was used
in the methods looking for the instances of composite
elements shared by all sequences in the dataset (15–18).
Their basic assumption is that similar CRMs drive similar
expression patterns. These methods can be applied both to
search for evolutionary conserved CRMs and to charac-
terize regulatory modules shared by co-regulated genes.
Thus, they use interspecies similarity without sequence
alignment and can handle multiple orthologous sequences.
Here, we further develop this approach combining it

with an HMM-based technique, which allows one to
account for the CRM structure. The regulatory modules
of both orthologous (different species) and co-regulated
(same species) genes are assumed to have a similar struc-
ture. We extend the notion of the CRM structure, or regu-
latory grammar; we describe it not only by a combination
of the motifs, but also as the motif frequencies, preferences
in the binding sites’ order and the distance distributions
between adjacent sites in a regulatory module. These
characteristics could improve the quality of the CRM pre-
diction and elucidate the rules of combinatorial transcrip-
tional regulation.
CORECLUST (COnservative REgulatory CLUster

STructure) uses an HMM-based technique to predict
regulatory modules given a set of known PWMs.
CORECLUST constructs a CRM model by revealing the
conserved structure of regulatory modules of orthologous
and/or co-regulated genes without using multiple sequence
alignment. Then, the obtained model is used to identify
similar regulatory modules throughout the genome and
thus to predict candidate co-regulated genes. The model
itself is also an interesting object for further analysis, as
it comprises conserved properties of regulatory modules,
such as co-localization of binding sites of certain types and
distance preferences for different motif pairs.
The application of the method to two different biolo-

gical systems, the vertebrate muscle-specific expression
system (3) and the Drosophila anterior–posterior (AP) pat-
terning system (19), demonstrates its ability to identify
CRMs for a set of system-specific TFs with a quality
higher than that of other methods. By applying
CORECLUST to the Drosophila patterning system we
show that it can successfully predict co-regulated genes.
Based on the trained models, we characterize the regula-
tory grammars for the Drosophila developmental and ver-
tebrate muscle-specific regulatory systems. The most
significant observations are supported by the literature
data, which demonstrates the ability of CORECLUST

to reveal a reasonable regulatory grammar. The software
implementing our method can be freely downloaded from
http://bioinf.fbb.msu.ru/�anna.

MATERIALS AND METHODS

The algorithm

Here, we outline the algorithm. Technical details are
provided in the Supplementary Materials.

At the preliminary stage of the analysis, candidate sites
corresponding to target PWMs are identified. This is done
using low thresholds and thus with high sensitivity. Then
the HMM combines some of the candidate sites in CRMs,
discarding the remaining sites.

The HMM
To detect regulatory modules in a DNA sequence we use a
HMM (Figure 1). The overall HMM architecture reflects
our intuition about the organization of CRMs. A CRM is
modeled as a cluster of TFBSs, surrounded by the back-
ground sequence. The HMM contains three main types of
generative states corresponding to three general types of
sequence:

. inter-module background sequence; it is modeled as
the background and all the candidate sites are
ignored there;

. sites which are generated in both strands according to
the position probability matrices known a priori; and

. regions between sites in regulatory modules, i.e. spacers.

Each generative state emits a varying-length sequence of
nucleotides. This type of the HMM architecture is known

Figure 1. Schematic representation of the HMM. Rectangles represent
the emitting states: the BKG (BACKGROUND) state emits back-
ground sequence, the S1, S2, etc. states emit, respectively, sites of
types S1, S2, etc., and the SPACER:D1 and SPACER:D2 states emit
spacer sequences with lengths satisfying distributions D1 and D2, re-
spectively. Ovals represent the silent states: the B (BEGIN) and E
(END) states are, respectively, the first and the last states of each
HMM path, the CE (CLUSTER ELONGATION) state yields elong-
ation of a site cluster, the NEXT (NEXT SITE) state defines the type
of the next site of a cluster. Arrows represent the allowed transitions
between the states. The probabilities of the transitions marked by
dashed lines are updated during the Baum–Welch training.
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as the generalized hidden Markov model (20) or the
‘HMM with duration’ (21,22). Such models allow for
easy use of any predefined length distribution for the
emitted states.

Our model characterizes the CRMs by the regulatory
structure, that is, by a set of preferences in the site ar-
rangement. First, we take into account preferences in the
site ordering by counting the conditional occurrence prob-
ability of a site of a certain type given the type of the
previous site in a CRM. Second, the spacing between
binding sites is considered. For this purpose we introduce
several distributions of spacer lengths, the combination of
which determines the preferred intersite distances for each
motif pair. Currently, two spacer-length distributions are
used (Supplementary Figure S2): (i) the geometric distri-
bution, which reflects site clustering without distance spe-
cificity, (ii) the exponentially damped sinusoid with a
period of 10.5 bp that represents the situation when inter-
acting proteins bind to the same side of the DNA helix.
The latter, helical phasing, distribution of intersite
distance was observed previously (23–25).

The algorithm stages
The algorithm of CORECLUST comprises two main
steps:

(1) training the model on given intergenic sequences of
orthologous and/or co-regulated genes; and

(2) applying the trained model to search for regulatory
modules with a similar structure.

When the modules are searched in a group of orthologous
(or co-regulated) sequences, the algorithm computes the
conservation score, which represents the quality and the
conservation of TFBS content of the identified CRMs.

Training the HMM parameters
To reveal the regulatory structure from a given set of se-
quences presumably containing similar CRMs, we train
the HMM parameters defining the regulatory structure
using the Baum–Welch algorithm (26). The initial values
of the parameters are drawn from the uniform
distribution.

CRM deciphering and weighting
In the HMM graph that is constructed for a given
sequence, each path marks a set of regulatory modules.
To optimize the correspondence of the HMM path to the
learned regulatory grammar, the posterior-Viterbi
decoding algorithm (27) is used. At the first step, the
forward–backward algorithm computes the posterior
probabilities for each sequence position to be in a given
state. Then, the Viterbi algorithm finds the best path (i.e.
the path with the maximal posterior probability) through
the HMM graph.

The algorithm identifies some (or zero) CRMs in a
sequence. Each CRM is scored by the ratio of natural
logarithms (base e) of two posterior probabilities: the
probability to obtain the nucleotide sub-sequence as
generated by the CRM model and the probability to
obtain it as generated by the background model. The
ratio equals to the ratio of the probabilities of two

sub-paths in the HMM graph that emit the CRM and
the background sequence, respectively; both sub-paths
span from the beginning to the end of the CRM.

Genome-wide search for co-regulated genes
Search for co-regulated genes can be done starting from a
group of similarly regulated (i.e. co-regulated or
orthologous) genes. Here, we perform the search that
starts from one group of orthologous genes. The
workflow of the search for co-regulated genes, in
outline, consists of the following steps (Figure 2):

(1) Select a gene known to be regulated by TFs of the
analyzed system. Define the region supposed to
contain the CRMs, for example interval [�20Kbp,
+20Kbp] relative to the gene start. Take regions
situated at the same location relative to the starts of
the orthologous genes in all analyzed genomes and
train the HMM parameters on this set of sequences.

(2) Apply the trained HMM to sequences surrounding
the starts of all known genes in all analyzed genomes
to identify and score candidate regulatory modules.

(3) Assign a conservation score to each group of
orthologous genes. This score represents the conser-
vation of CRMs identified in the neighborhood of
these genes. Sort the groups of orthologs by the con-
servation score.

Data

CORECLUST was applied to two biological systems, the
vertebrate muscle-specific expression system and the AP
patterning system of the Drosophila embryo.

Figure 2. The workflow of the search for co-regulated genes.
Horizontal lines denote upstream regions of orthologous genes, the
starts of these genes are shown by red arrows. The lowest plot
reflects the program output. Blue rectangles represent predicted
CRMs; the heights of the rectangles reflect the weights of the CRMs;
the red line denotes the threshold for the CRMs weight (see
Supplementary Materials for the output examples).
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The muscle dataset, initially compiled by Wasserman
and Fickett (3), is widely used to assess the quality of
the CRM prediction. The dataset including five PWMs
(Mef2, Myf, Srf, Tef and Sp1) and 24 sequences from
the human, mouse, rat, cow and chicken genomes with
the average length of 850 bp, as well as locations of
known CRMs conferring muscle-specific gene expression,
was obtained from (28).
For the AP system, we used PWMs for seven TFs:

Bicoid (Bcd), Hunchback (Hb), Caudal (Cad), Kruppel
(Kr), Knirps (Kni), Tailles (Tll) and Giant (Gt). All of
them were taken from the iDMMPMM database (29).
For our analysis we used 12 Drosophila genomes from
the FlyBase database (30): D. melanogaster (R5.6),
D. ananassae (R1.1), D. erecta (R1.1), D. grimshawi
(R1.1), D. mojavensis (R1.1), D. persimilis (R1.1),
D. pseudoobscura (R2.1), D. sechellia (R1.1), D. simulans
(R1.1), D. virilis (R1.0), D. willistoni (R1.1) and D. yakuba
(R1.1). The information on groups of orthologous genes
was taken from FlyBase (release FB2008_03) (30). In the
genome-wide searches, all annotated genes in all genomes
were processed. The search area for a gene was defined as
a sequence around the gene start (at most 20 Kbp
upstream and 20 Kbp downstream and limited by the
adjacent genes). The gene start was defined as the start
coordinate of the gene in the FlyBase database.
The sense strand of the gene was processed. The CRM
was assumed to regulate a gene if it was found in the
search area of that gene. The repeat sequences were
masked by the RepeatMasker software (http://www
.repeatmasker.org).
The expression data for the Drosophila genes were

obtained from the DBGP database (31). The GO annota-
tion of genes were taken from the GO database (32); GO
statistics was computed by the GOStat program (33).

Evaluation of prediction

The CORECLUST performance was assessed on the
muscle dataset of vertebrates and the AP dataset of
Drosophila. The quality of predictions on the muscle
dataset was evaluated using the benchmarking framework
developed by Klepper et al. (28). For a comprehensive
assessment of the program’s performance, the framework
provides six different measures of correspondence of the
predicted CRMs to the known ones: correlation coeffi-
cient (CC), sensitivity (Sn), specificity (Sp), positive pre-
dictive value (PPV), performance coefficient (PC,
phi-score) and average site performance (ASP):

CC ¼
TP �TN� FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPþ FPð Þ TPþ FNð Þ TNþ FPð Þ TNþ FNð Þ
p ;

Sn ¼
TP

TPþ FN
; Sp ¼

TN

TNþFP
; PPV ¼

TP

TPþFP
;

PC ¼
TP

TPþ FPþ FN
; ASP ¼

Snþ PPV

2
:

Here, TP is the number of nucleotides predicted to be in
a CRM and actually belonging to a CRM, TN is the
number of nucleotides that do not belong to either pre-
dicted or known CRMs, FN is the number of nucleotides

that belong to a known CRM but are not predicted as
such, and FP is the number of nucleotides that are pre-
dicted to be in a CRM, but are not in a known one.
Following the procedure in (28), training of the
CORECLUST model and CRM search was performed
on the entire set of sequences, without dividing the
dataset into training and testing parts.

The quality of predictions made for the AP system was
assessed on the following dataset: 17 AP genes with
known CRMs controlling AP patterning in Drosophila
(h, kni, hb, ftz, eve, run, tll, gt, Kr, cad, prd, ems, btd,
slp1, bowl, salm and fkh) and PWMs for 7 TFs known
to be important in the AP regulation (Bcd, Hb, Cad,
Kr, Kni, Tll and Gt). The model training and CRM
search were done separately for every gene using all avail-
able orthologous sequences. The predictions were made
for 40 Kbp sequence fragments ([�20Kbp, +20Kbp]
relative to the start of each gene). The modules predicted
in D. melanogaster sequence fragments were compared
with the known ones from the REDFly database (34)
(see Supplementary Data); overlapping CRMs were
merged.

As a performance measure, we used the CC as it
combines all aspects of the prediction quality. The CC
was calculated for each gene separately and for the
whole gene set. In the former mode, the values of TP,
TN, FP and FN were calculated for each fragment separ-
ately. In the latter mode, used to assess the overall quality
of the predictions for all genes, the values were calculated
for all fragments together.

RESULTS

We developed a Java program CORECLUST to search
for CRMs in DNA sequences for a set of system-specific
TFs. CORECLUST reveals conserved structure (preferred
site arrangements) of CRMs of orthologous and/or
co-regulated genes and searches for regulatory modules
with a similar structure. The program takes as input
training sequences presumably containing similar CRMs
and a set of user-specified motifs (PWMs). It constructs a
model of regulatory modules contained in the training se-
quences and then uses it to search for similar CRMs in
genomic sequences. CORECLUST is available for
download at http://bioinf.fbb.msu.ru/�anna.

Testing

We tested the CORECLUST ability to identify CRMs in a
set of intergenic regions of co-regulated and orthologous
genes on two different biological systems from two distinct
clades.

Muscle-specific regulatory modules in vertebrates
We used the benchmarking framework (28) described in
the ‘Materials and Methods’ section to assess the
CORECLUST performance, which then was compared
with the performance of eight published CRM predicting
methods, obtained from the benchmarking framework
website (http://tare.medisin.ntnu.no/composite/compos-
ite.php): Composite Module Analyst (CMA) (16),
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CisModule (17), ModuleSearcher (18), Stubb (9),
MSCAN (2), MCAST (5), Cister (6) and Cluster-Buster
(7). All methods except CisModule use known PWMs as
input, although CMA and ModuleSearcher can select ap-
propriate matrices from a database, rather than using pre-
defined set of system-specific PWMs. CMA, CisModule
and ModuleSearcher look for instances of composite
elements shared by all sequences in the dataset. Other
methods process each sequence individually. Stubb,
MCAST, Cister and Cluster-Buster use a HMM-based
approach to search for locally dense clusters of TFBSs,
although Stubb can also make use of correlations
between binding sites. MSCAN searches for statistically
significant clusters of binding sites in a sliding window
along the input sequence.

The comparison of the programs’ performance
(Figure 3) showed that CORECLUST scored better than
all other programs for almost all metrics. Losing a little in
the sensitivity, CORECLUST scored highest of all for the
CC, PC and ASP measures, which capture the over- and
underprediction in a single value.

Early developmental enhancers in Drosophila
Genes of the Drosophila AP system have relatively long
CRMs comprising 4500 bp per gene on average. On the
other hand, 12 annotated genomes of the Drosophila genus
are available in public databases. The large size of the AP
CRMs and the number of the available orthologs for each
gene allowed us to use upstream regions of genes from just
one orthologous group as a training set without
overfitting.

The CORECLUST performance was assessed on 17 AP
genes as described in the ‘Materials and Methods’ section.
The results were compared with those demonstrated by
three other publicly available programs: Stubb (9),
MOPAT (15) and Cluster-Buster (7). As noted above,
Stubb and Cluster-Buster are HMM-based, and Stubb in-
corporates correlation between binding sites in a module
and can take advantage of interspecies comparison. At
that, Stubb considers only two sequences at a time and
depends on sequence alignment. MOPAT searches for
motifs co-occurring in multiple sequences and utilizes
both the correlations between binding sites and the com-
parative information, if provided with a set of orthologous

sequences. The test protocol was as follows. All programs
were given the same set of PWMs and the same set of
genes. MOPAT and CORECLUST were given sequences
of all available orthologs for each gene. Stubb was given
sequences taken from two species, D. melanogaster and
D. virilis, as in the original paper (9) (for the btd gene,
the D. mojavensis ortholog was used instead of the
D. virilis one because of the absence of the latter).
Cluster-Buster was run on sequence fragments from
D. melanogaster.
All parameters for Stubb were set to their default

values, except the minimum number of motifs in a
module. It was set to 1 instead of 3 by default to make
it closer to CORECLUST. Cluster-Buster also was run
with the default parameters, except for the pseudo-count,
which was set to 0.5, as for Stubb. The CRM score thresh-
old was set to 5, as proposed at the Cluster-Buster
web-server (http://zlab.bu.edu/cluster-buster/cbust.html).
The parameters for the MOPAT program had to be
changed to be applicable for our input data. The
pseudo-count was set to 0.5; the minimum number of
distinct motifs in a cluster (k), to 2; the minimum
number of sequence fragments containing instances of a
motif cluster (g), to 3. To select the window size (w), we
ran MOPAT for four different window sizes: 200, 300, 400
and 500, and selected the one with the highest value of the
CC calculated for all genes together (300).
The comparison showed (Table 1) that predictions

made by CORECLUST had a higher value of CC than
Stubb (P-value <0.05, Wilcoxon signed-rank test),
MOPAT (P-value <0.0007, Wilcoxon signed-rank test)
and Cluster-Buster (P-value <0.02, Wilcoxon signed-rank
test). According to the P-value comparison, Stubb, whose
model was quite similar to ours, had the best quality pre-
diction following CORECLUST. At the same time, Stubb
scored worse than CORECLUST and Cluster-Buster on
the muscle dataset. Interestingly, Cluster-Buster showed
rather good results on both the Drosophila and the verte-
brate datasets, although it uses no extra information like a
regulatory grammar or interspecies comparison.

Genome-wide search for genes co-regulated with known
Drosophila AP genes

CORECLUST can be applied to the genome-wide identi-
fication of regulatory modules that are described by the
same grammar as the training ones, and thus to detect
genes that are co-regulated with a given gene or a set of
genes. To test the ability of CORECLUST to predict a set
of co-regulated genes starting from a single group of
orthologs, we applied CORECLUST to the Drosophila
AP patterning system. As the input, the same AP PWMs
as in the testing section (Bcd, Hb, Cad, Kr, Kni, Tll and
Gt) were used. We performed the search for co-regulated
genes for different training genes. For each run, we
selected a D. melanogaster gene and trained the HMM
on the [�20 Kbp, +20 Kbp] sequence fragments relative
to the start of this gene and all its available orthologs from
the remaining Drosophila genomes. After the model was
trained, it was applied to the regions of all genes in all
twelve Drosophila genomes and thus a list of genes that

Figure 3. Comparison of the programs’ performance. Notation for the
performance measures see in the text.
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had CRMs similar to the CRMs of the training gene was
obtained. Then, the orthologous groups of genes with the
best conservation score were selected. Such analysis was
performed for 22 AP genes and in all cases developmental
genes were overrepresented in the resulting gene lists. For
example, for the training gene hairy (h), which is a primary
pair-rule gene involved in the establishment of the
segments during the developmental stages 4–6, the
program predicted 45 co-regulated genes. Six of these
genes were predicted as related to the AP patterning
system because their search regions overlap with the
search regions of well-known AP patterning genes. For a
clearer presentation, these genes were removed from the
result list. The remaining 39 genes were characterized by
strong and conserved predicted CRMs and could be con-
sidered as candidates to be co-regulated with h. The
analysis of the list using the GOStat program (33)
yielded significant overrepresentation of GO-terms (32)
related to blastoderm segmentation and to development
(Table 2). Moreover, most of the top genes of this list
(Figure 4) are well-known genes of the AP patterning
process and they do have known CRMs driven by AP
TFs. Three genes among the top genes that are not
known to be related to the AP system (CG13713,
CG5103 and Cyp6v1) are still good candidates to be
involved in this system, as they are preceded by regions
bound by the AP TFs during the embryogenesis stages
4–6, according to the ChIP-chip data (35).
To assess the quality of the resulting gene lists for all 22

training genes systematically, we compared them with pre-
dictions of Cluster-Buster (7). Cluster-Buster was selected
for the comparison, as it utilizes neither structure of the
regulatory modules, nor their conservation among

different species, but still demonstrates rather good per-
formance (see above).

We compiled a list of genes likely belonging to the AP
patterning system. These genes are annotated as ‘embry-
onic pattern specification’ (GO:0009880) in the GO
database, and at the same time are expressed at the
stages 4–6 of the Drosophila development (31). The list
was supplemented by well-known AP genes not found
by this procedure. The final positive set contained 115
genes (see Supplementary Data).

As Cluster-Buster does not score genes by potential
regulation by the analyzed TFs, we applied two simple
measures to select genes with the strongest and most
numerous CRMs, as predicted by this program.
After the genome-wide search (Cluster-Buster was run
with the parameters described in the testing section and
on the same set of D. melanogaster sequence fragments
as used for the CORECLUST runs), the genes were
sorted by:

. the maximum weight of the regulatory modules, pre-
dicted for a gene; and

. the sum of weights of the regulatory modules, pre-
dicted for a gene.

Thus, two sorted gene lists for the Cluster-Buster
predictions were obtained.

Then for every training gene, hypergeometric tests were
applied to estimate the statistical significance of the en-
richment between the positive gene set and each of the
following three gene lists:

(1) the list of co-regulated genes predicted by
CORECLUST which contains m genes;

(2) first m genes from the Cluster-Buster gene list, sorted
by the maximum module weight; and

(3) first m genes from the Cluster-Buster gene list, sorted
by the sum of the module weights.

The comparison of the lists (Figure 5, Supplementary
Table S1) demonstrated that predictions made by
CORECLUST better fitted the positive gene set than the
Cluster-Buster predictions. On the other hand, the com-
parison of the lists for different training genes showed that
not all of them are equally good, probably because their
regulatory regions do not contain enough binding sites to
train the CORECLUST model properly.

Table 1. Comparison of the programs’ performance, measured as a

Matthews CC

Gene CORECLUST Stubb MOPAT Cluster–Buster

eve 0.73 0.56 0.54 0.58
h 0.69 0.17 0.26 0.49
btd 0.45 0.27 0.31 0.47

Kr 0.45 0.24 0.29 0.64

kni 0.43 0.22 0.27 0.45

gt 0.41 0.48 0.27 0.40
slp1 0.35 0.34 0.44 0.35
hb 0.32 0.33 0.17 0.22
ftz 0.31 0.36 0.32 0.27
fkh 0.31 0.28 0.27 �0.02
tll 0.26 0.15 0.09 0.17
prd 0.26 0.14 0.13 0.17
salm 0.23 0.07 �0.01 0.17
bowl 0.20 0.10 �0.01 0.17
run 0.08 0.17 0.07 0.11
ems �0.02 0.15 �0.01 �0.02
cad �0.03 0.17 �0.02 �0.04
Total 0.32 0.20 0.20 0.29
Median 0.31 0.22 0.26 0.22
SD 0.21 0.13 0.17 0.21
P-value* <0.05 <0.0007 <0.02

Total row contains values of CC calculated for the whole gene set (see
‘Materials and Methods’ section). The maximum value in each line is
set in bold. *One-tailed P-value for the Wilcoxon signed-rank test.

Table 2. GO-categories (32) overrepresented in the set of genes

predicted to be co-regulated with gene h

GO term Npred Ntotal P-value

Blastoderm segmentation 14 137 2.98E-17
Embrionic pattern specification 14 176 5.51E-16
Segmentation 14 181 5.51E-16
Periodic partitioning by pair rule gene 6 6 2.18E-14
Posterior head segmentation 7 15 2.31E-13
Embrionic development 16 532 1.78E-12

Npred is the number of predicted genes assigned with the GO term,
Ntotal is the number of the D. melanogaster genes assigned with the
GO term.
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DISCUSSION

Here, we present CORECLUST, a method for prediction
of CRMs for a set of known system-specific motifs.
CORECLUST constructs a model of CRMs of similarly
regulated (i.e. co-regulated or orthologous) genes by iden-
tification of conserved grammatical structures of the
binding sites. Then, the constructed model may be used
for the prediction of CRMs with a similar structure
throughout the genome (one eukaryotic genome is pro-
cessed in 25–60 min on average (for the Drosophila and
vertebrate genomes respectively) using one core of Intel
Xeon L5520 processor). Testing of CORECLUST on
two different biological systems, vertebrate muscle-specific

expression system and Drosophila AP patterning system,
shows that it may be successfully used for solving the
standard problem of CRM detection for a set of
system-specific TFs. Application of our program for the
identification of co-regulated genes in Drosophila shows
that given only one group of orthologous genes as the
input, it can predict a considerable number of co-regulated
genes.

Structural aspects of the model

The incorporation of different distributions for the
distance between adjacent sites is a novel feature of our
algorithm. Nevertheless, CORECLUST can be also run

Figure 4. The top genes of the list of genes predicted to be co-regulated with gene h. Genes are sorted by the conservation score value of their
predicted CRMs. Expression patterns are presented if available for the developmental stages 4–6 (31).

PAGE 7 OF 10 Nucleic Acids Research, 2012, Vol. 40, No. 12 e93



without accounting for the intersite spacing (we shall
refer to this option as CORECLUST-FC) or even
ignoring distances and correlations between binding sites
(CORECLUST-F). The comparison of the quality of the
predictions that are made by CORECLUST,
CORECLUST-FC and CORECLUST-F on both devel-
opmental and muscle datasets shows that, in general, ac-
counting for the structure information increases the
sensitivity and slightly decreases the specificity of predic-
tions (Supplementary Figure S4). A possible explanation
is that accounting for the regulatory structure reveals
weak sites situated in a proper order and at proper dis-
tances from each other and from other sites in a CRM.
But if we consider each gene of the Drosophila develop-
mental system separately, we see that along with the
positive examples, when inclusion of structural aspects
allows the algorithm to find proper regulatory modules
(Supplementary Figure S5), there are also cases of
decreasing overall quality of predictions (Supplementary
Table S2), mainly due to the loss in the precision.
However, one should take into account that known regu-
latory modules possibly do not comprise all regulatory
regions. Still, the conservation of the site content of the
predicted modules is definitely higher for those CRMs,
which are predicted with the full CORECLUST model
(Supplementary Figure S6), arguing for considering
these predictions as more reliable.
There is also a possibility to incorporate other distance

distributions in the model, which could yields non-trivial
regulatory grammar features. Currently, we use only two
distance distributions, geometric and periodic, consistent
with the DNA helical pitch. Other possible distributions
may utilize, e.g. the nucleosome periodicity. We did not
use additional distributions because it could lead to
over-fitting of the model on our dataset. The same
problem appears with increasing the number of PWMs
used in the model, which causes model overfitting and
increase in the working time, as the number of the
HMM states depends quadratically on the number of
the input matrices. In the current version of the program
only a relatively small number of PWMs can be used

(up to 10; the maximum acceptable number of PWMs
may depend on the running parameters and the size of
training sequences). A possible way to overcome this limi-
tation is to train only those HMM parameters that are
detected to be significant for a given sequence region as
in Stubb (9). This could make it possible to use separate
CRM regions, rather than large regions around the genes’
starts, as training sequences, which could allow one to
identify the conserved structure of an individual CRM.

Deciphering the regulatory grammar

By design, CORECLUST identifies a structure of similar
regulatory modules, allowing one to detect and analyze
the preferred arrangements of binding sites inherent in a
particular regulatory system. The structure of training
regulatory modules can be obtained directly from the
model. For each pair of site types, i and j, the trained
model contains the conditional probability to observe a
site of type j next to a site of type i. This probability
reflects the frequency of occurrence of this site pair in
the training sequences, which may mean that the factors
binding these sites interact with each other to regulate
gene transcription.

According to the parameters of the model trained on
the muscle dataset (Supplementary Figure S7), the most
probable site pairs are Mef2-Myf [supported by the
TransCompel database (36) and (25)], Sp1-Srf [supported
by (37,38)] and Sp1-Sp1 [supported by (39)]. Interestingly,
according to the model, the intersite distance for the site
pair Mef2-Myf is distributed according to the helical
phasing distribution, which was also observed in (25).
The other observed interactions are also supported by
the literature or TransCompel: Tef-Mef2 (40), Myf-Sp1
(36) and Mef2-Sp1 (41).

The analysis of the model, trained on 40Kb se-
quence fragments ([�20Kbp, +20Kbp] relative to the
start of each gene) of 11 well-known developmental
genes (h, kni, hb, ftz, eve, run, tll, gt, Kr, cad and prd)
and their orthologs (Supplementary Figure S8), shows
that Drosophila developmental patterning system is
characterized by homotypic TF interactions, which

Figure 5. Genome-wide prediction of co-regulated genes for different training genes made by CORECLUST and Cluster–Buster (Cbust). The
histogram represents the comparison of the hypergeometric P-values of enrichment between the positive gene set and three different gene lists,
created by CORECLUST and Cluster–Buster, sorted by the maximum [Cbust(max)] or the sum [Cbust(sum)] of the module weights.
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agrees with previous observations (24,42,43). Interest-
ingly, sites in some of these homotypic pairs tend to be
codirectional (see Kr–Kr and Hb–Hb pairs on
Supplementary Figure S8), and some of them, like Hb–
Hb and Bcd-Bcd, are characterized by the periodic distri-
bution of the intersite distances, consistent with the DNA
helix step also observed in (23). The analysis of modules
predicted near the same developmental genes revealed
several interesting distributions of distance between sites
in a module (Supplementary Figure S9). For example, for

almost all (15 out of 18) observed site pairs Gt
!

Gt
!

(two Gt
binding sites, the arrow shows the direction of a site
relative to the gene direction), the distance between sites
in a pair is 51–58 bp. The distribution for the site pair

Kni
�!

Kni
 �

has an unusual peak at distance 135–138 bp,

which is rather uncommon and perhaps could indicate

that the corresponding TFs interact with packed DNA.
All in one, CORECLUST makes biologically meaning-

ful and useful predictions. It can successfully identify
putative CRMs, predict co-regulated genes and decipher
common rules of the TF interactions for a regulatory
system.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR online:
Supplementary Tables S1–S2, Supplementary Figures
S2–S9, Supplementary Methods, Supplementary Files,
and Supplementary References [44–46].
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