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Abstract
Limited or regulatory proteolysis plays a critical role in many important biological pathways like
blood coagulation, cell proliferation, and apoptosis. A better understanding of mechanisms that
control this process is required for discovering new proteolytic events and for developing
inhibitors with potential therapeutic value. Two features that determine the susceptibility of
peptide bonds to proteolysis are the sequence in the vicinity of the scissile bond and the structural
context in which the bond is displayed. In this study we assessed statistical significance and
predictive power of individual structural descriptors and combination thereof for the identification
of cleavage sites. The analysis was performed on a dataset of >200 proteolytic events documented
in CutDB for a variety of mammalian regulatory proteases and their physiological substrates with
known 3D structures. The results confirmed the significance and provided a ranking within three
main categories of structural features: exposure > flexibility > local interactions. Among
secondary structure elements, the largest frequency of proteolytic cleavage was confirmed for
loops and lower but significant frequency for helices. Limited proteolysis has lower albeit
appreciable frequency of occurrence in certain types of β-strands, which is in contrast with some
previous reports. Descriptors deduced directly from the amino acid sequence displayed only
marginal predictive capabilities. Homology-based structural models showed a predictive
performance comparable to protein substrates with experimentally established structures. Overall,
this study provided a foundation for accurate automated prediction of segments of protein
structure susceptible to proteolytic processing and, potentially, other post-translational
modifications.
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Introduction
Proteolysis is one of the few irreversible post-translational modifications. Limited
proteolysis, also known as proteolytic processing [1], has a regulatory role in almost all
biological pathways, including blood coagulation, cell proliferation, and cell death [2].
Proteolytic events are involved in progression of many diseases including cancer,
inflammation, and atherosclerosis [3], so many proteases and their substrates are important
diagnostic and therapeutic targets [4]. In contrast to exhaustive protein degradation, which is
required for intracellular protein turnover or utilization of dietary proteins, regulatory
proteolysis typically affects a specific peptide bond in a target protein and modulates the
biological activity of the resulting fragments. Regulatory proteolytic events may lead to a
loss or gain of function, as it was initially recognized for the proteolytic activation of
zymogens [5].

Our knowledge of mechanisms that control the precision and extent of proteolytic
processing is far from complete. The key features of native proteins that determine their
susceptibility to limited proteolysis are: (i) the presence of an amino acid motif (typically a
stretch of 1 to 5 contiguous residues) that conforms to the recognition specificity of the
enzymatic cleft; (ii) the 3D structural context of these sites; (iii) required by some regulatory
proteases, the presence of the so-called exosites that are located away from the primary
cleavage site but which contribute additional specific enzyme–substrate interactions [6]; and
(iv) finally, the co-expression of protease and substrate in both space and time, an important
factor in controlling regulatory proteolysis in vivo. Among these determinants, sequence-
based substrate specificity has received the most attention. Several established
methodologies, such as phage display, peptide libraries, and genome-scale degradomics,
have been successfully applied for the detailed mapping of primary substrate specificity of
many regulatory proteases [7]. The results of these studies captured in the form of consensus
motifs or positional-specific scoring matrices (PSSM) [8, 9] are broadly used for the
prediction and interpretation of proteolytic events [9,10,11].

Despite their apparent utility, these sequence-based models, when used in isolation, often
fall short of accurately describing and predicting proteolysis of proteins in their native
conformation. In fact, the position of cleavage sites within the substrates’ intact 3D structure
plays an equally, if not a more, prominent role [12]. Moreover, among the features listed
above, such structural requirements appear to be of a truly universal nature, shared by many
distinct proteases. Therefore, the objective of this study was to elucidate the structural
requirements of protein substrates for cleavage by a representative subset of proteases, and
thereby enhance our predictive capabilities for the entire spectrum of regulatory proteolytic
enzymes.

Several structural features of protein substrates are thought to contribute to their
susceptibility to proteolysis [13]. However, the relative importance of individual features
remains a subject of controversy. In one of the early studies of limited proteolysis by
subtilisin, a bacterial protease with broad substrate specificity, surface regions of a protein
substrate having high segmental mobility were found to be particularly susceptible to
proteolysis [14]. In a different study, accessibility rather than flexibility was recognized as
an essential structural determinant of limited proteolysis [15]. Although both studies noted
the tendency of proteolytic events to occur outside of regions with well-defined secondary
structure, several cleavage sites in alpha-helices have been reported [15]. Early modeling
efforts led to a conclusion that local conformational changes required for proteolysis are
readily achievable for extended flexible loops, are theoretically possible for helices, but are
implausible for β-sheets [16, 17]. In the first systematic survey of 32 published proteolytic
events, Hubbard et al. [13] evaluated the significance of many structural descriptors in three
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general categories: exposure (solvent accessibility, protrusion, and packing), flexibility (B-
Factor), and local interactions (secondary structure and hydrogen bonding). Although this
analysis was performed on a relatively small dataset representing 8 proteases (mostly
bacterial and digestive, rather than regulatory, enzymes) and 17 protein substrates, it
provided a conceptual framework on the structural features of substrates that regulate
proteolysis, which is still the gold standard today.

Since Hubbard's study in 1998, there have been massive increases in information and
considerable advances in computational biology. These include a sevenfold increase in the
number of 3D structures in PDB [18] and vastly improved structural modeling techniques
[19]. In addition, we established CutDB, a database of >3,000 proteolytic events captured
from original publications with a strong emphasis on mammalian regulatory proteases [20].
Together, these advances motivated us to revisit the conclusions that have been drawn on
proteolysis using much smaller sets of data. Our main goals were to assess the contribution
of structural features of substrates to proteolysis and to estimate the predictive capabilities of
these features (or combinations of features).

While most of the conclusions we draw are generally consistent with those of prior studies,
our analysis, for the first time, provides a ranking within the three main categories of
structural features: exposure, flexibility, and local interactions. The detailed analysis of
secondary structure context of proteolytic events confirmed their highest frequency in loops
followed by helices. However, in contrast with some previous reports, we observe an
appreciable (albeit lower) frequency of cleavage in β-strands. We built a gallery of 3D
structures of analyzed protein substrates with visualized cleavage sites, which allowed us to
reveal special structural features of such “non-canonical” proteolytic events. Overall, this
study provides a sound statistical foundation for the accurate automated prediction of which
segments of proteins are susceptible to proteolysis (and, potentially, other post-translational
modifications [21]).

Methods
Datasets representing documented regulatory proteolytic events in mammalian proteins with
known or modeled 3D structures were generated as follows. Information about documented
proteolytic events was extracted from CutDB [20] and defined as a unique combination of
three elements: (i) protein substrate (NCBI Accession [22]), (ii) protease (MEROPS ID
[23]), and (iii) position of a cleavage site (from original publications available in PubMed).
Structural information for a subset of protein substrates with experimentally solved 3D
structure was obtained by scanning the PDB [24] using BLAST [25] with a 95% identity
threshold. Homology-based structural models were obtained by applying the automated
modeling protocol as implemented at the JCMM server [26]. All proteolytic sites were
mapped by a script (available by request) onto respective 3D structures and models and
visualized by highlighting P1 positions (according to Schechter and Berger notation [27])
using Chimera software (see Fig. 1 for examples) [28]. Based on visual inspection of these
graphical representations, several outliers with numerous cleavage sites by the same
protease within the same protein were identified and excluded from datasets as likely
resulting from denaturation (and/or overdigestion) under experimental conditions of
respective studies. Indeed, most of such cases were observed for hemoglobin, myoglobin,
and similar model protein substrates historically used to assess primary specificity of
proteases under the conditions of complete or partial denaturation. After manual curation,
our final datasets included 80 non-redundant protein substrates with experimentally solved
structures (217 associated proteolytic events) and 43 proteins with high-quality structural
models (98 proteolytic events). A complete list of documented and analyzed proteolytic
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events is provided in Supplemental Files 1 and 2. A gallery of respective 3D structures and
structural models with visualized cleavage sites is provided in Supplemental Files 3 and 4.

Structural descriptors derived from experimentally solved and modeled structures included
solvent accessibility, hydrogen bonding, torsion angles, and secondary structures calculated
using DSSP software [29]. DSSP secondary structure notations (8 classes) were transformed
to a simplified “loop/helix/β-sheet” classification (3 classes) following the approach applied
in CASP [30]. Naccess [31] was used as an alternative tool for calculating solvent
accessibility. This program also allowed us to compute solvent accessibility for main chain,
side-chain, non-polar side-chain, and polar side-chain atoms separately. A similar but
distinct descriptor, molecular surface accessibility, was calculated using the MSMS package
[32]. Packing was calculated using an original method by Nishikawa and Ooi [33] for 8-Å
and 14-Å spheres (default value for most calculations). Protrusion and depth indexes were
calculated using CX [34] and DPX [35] algorithms, respectively. A complete list of
structure-derived descriptors is provided in Supplemental File 5. The only descriptors that
could not be assessed for the structure models dataset were B-Factors and disordered regions
obtained directly from PDB files. Disordered regions were defined by comparing SEQRES
and ATOM records of the PDB files as described in [36]. A smaller set of structural
descriptors derived solely from amino acid sequences of all proteins in both datasets
included: secondary structures predicted using Psipred [37], predicted disordered regions
computed by Disopred [38], and predicted solvent accessibility calculated using Sable [39].
Normalization of values of all types of descriptors for all individual protein substrates was
performed using an expression:

where zi,j is the normalized value of the structural descriptor calculated for the i-th residue of
the j-th substrate, xi,j is the raw structural descriptor value of the i-th residue of the j-th
substrate, μj is the mean value of the descriptor over all residues of the j-th substrate, and σj
is the standard deviation. Calling and parsing of needed tools was performed using custom
Python scripts making use of BioPython libraries [40]. Aggregated data were stored in
Oracle XE [41]. Categorial (nominal) descriptors, e.g. secondary structure, were transformed
into binary indicator variables. Closeness of the descriptor distributions to normality was
checked by Kolmogorov-Smirnov test and by visual analysis of histograms. Statistical
analysis was performed using Oracle XE built-in statistical functions.

Evaluation metrics
To estimate the predictive power of each structural descriptor, we used a single-variable
binary classification approach where the independent variable is a particular descriptor and
two classes of objects are cleavable and uncleavable peptide bonds (positive and negative
class, respectively). Our choice of the specific metrics for evaluation of the quality of
classification was dictated by two special features of the considered datasets.

The first feature is the size imbalance of the two classes. Indeed, of the total ~26,500 peptide
bonds in the dataset of substrates with solved structures, only 158 (0.5%) belong to the
positive class based on the available data. The same bias was observed for the dataset of
structural models (83 of the total 15,224). Therefore, of the standard threshold-associated
metrics, only three, Precision (a fraction of true positives versus all positive predictions),
Recall (a fraction of correctly predicted positive cases relative to the entire positive class),
and F-score (a harmonic mean of Precision and Recall with an option to assign different
weights for each of the two metrics), were taken into consideration [42]. As our main
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objective was to establish a capability to precisely classify nearly all known cleavage sites
while minimizing the total number of positive predictions, we could use F-score as the sole
evaluation metric for the simultaneous optimization of both Precision and Recall. Accuracy
is recognized as an inadequate metric for the imbalanced classification problem [43], and it
was not used in our study.

The second feature is the intrinsic underrepresentation of the positive class. The extent of
this underrepresentation is expected to be very large as the data were collected from
published studies where a given protein substrate was tested with only one or several
proteases (but not with the entire range of 94 proteases in our datasets). Even more
importantly, whereas our analysis seeks to deduce structural features of cleavage sites
independently of sequence motifs, actual regulatory proteases, even if all of them could be
tested, have well-defined sequence preferences covering only a small fraction of all
potentially cleavable peptide bonds. Therefore, a very large number of cryptic (or “hidden”)
cleavage sites would appear in the negative class. Due to these intrinsic limitations of the
dataset, the apparent optimal classification threshold would be significantly shifted toward
the positive class. In an attempt to partially compensate for this bias, we introduced the
additional F10-score metric assigning a tenfold higher weight for Recall compared to
Precision. This is equivalent to lowering a penalty for false positives compared to false
negatives. In addition to these two threshold-based evaluation metrics (F-score and F10-
score), we used a more general AUC (Area Under the ROC Curve) metric [44], which
aggregates the behavior of the classification model over all possible thresholds.

Probability of the presence of a particular type of secondary structure at proteolytic sites was
assessed using a maximum likelihood method [45]. For this purpose, probability values for
loops, helices, and β-sheets were treated as a vector of unknown parameters p = (pl , ph , pβ),
where pl + ph + pβ = 1. Then, because secondary structure content is different in each
considered protein, the probabilities of the particular type of secondary structure in the
cleavage sites for each given protein were derived as:

where i is the protein index, s = {l, h, β} reflects the secondary structure type, ns,i is the
number of residues of particular secondary structure type s in the i-th protein, and Ni is the
total number of residues in the i-th protein. The estimates p̂ = (p̂l, p̂h, p̂β) of probabilities
were obtained by finding the values, which are maximizing likelihood function:

where j is the index of proteolytic event, M is the total number of proteolytic events, s(j) is
the type of the secondary structure for the j-th proteolytic event and i(j) is the index of the
substrate of the j-th proteolytic event. Probability values were found by an exhaustive search
on a grid constructed within pl, ph and pβ parameters space [0,1]×[0,1]×[0,1] with 0.01 step.

Combined set of descriptors
The combined set was defined as a set of 25 descriptors, which were estimated as
statistically significant (p-value < 0.05) by the t-test applied to the solved structure dataset
for the case of raw values of descriptors. Naïve Bayes and Decision tree algorithms were
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applied using Orange 2.0 [46]. LIBSVM [47] was used for classification by the SVM
method involving the gaussian and linear kernel options.

Results
The approach and the overview

The datasets used for our analysis included 315 proteolytic cleavage sites that have been
described in the literature and captured in CutDB [20]. The documented cleavage sites were
included for analysis if, and only if, the site resided in a protein of known structure (217
sites, Supplemental File 1) or within a protein whose structure could be confidently modeled
based on the known structure of a close homolog (98 sites, Supplemental File 2). These cut
sites reside within a variety of proteins, and were generated predominantly by mammalian
regulatory proteases from all major catalytic classes (Supplemental File 15). The analysis
aimed to assess the contribution of structural features of substrates to proteolysis and to
estimate the predictive capabilities of these features included in the following key stages:

i. Structural features of the analyzed cleavage sites were captured by values of 14
common structural descriptors (32 descriptor variants) computed or obtained
directly from PDB files (Supplemental File 5). This list encompasses all descriptors
used in previous studies on proteolysis [13,14,15,16,17]. It was expanded
substantially by inclusion of additional descriptors (backbone torsion angles, depth
index, molecular surface accessibility, etc.) and by applying novel computational
tools (for example, solvent accessibility was computed using DSSP and Naccess
tools). A gallery of 3D structures and structural models with visualized cleavage
sites was built (Supplemental Files 3 and 4) to assist in initial selection and further
exploration of structural features of proteolytic events.

ii. Statistical significance of associations of all cleavage sites with individual
descriptors was evaluated by two distinct methods [48]. The first method involved
a statistical analysis to determine if cleaved vs. uncleaved peptide bonds indeed
have a different distribution across structural features (descriptors). The second
method, which is derived from the machine learning theory, sought to employ
structural descriptors to predict cleavable peptide bonds by treating prediction as a
binary classification task. Both methods gave essentially consistent results and
allowed us to rank the entire set of structural descriptors by their significance in
predicting proteolytic events.

iii. Comparison of these results between the two datasets of protein substrates with
known and predicted structures revealed a high level of consistency, suggesting
that homology-based models can be used for structure-based prediction of cleavage
sites with comparable efficiency. In contrast, structural descriptors deduced directly
from the amino acid sequence showed only marginal significance.

iv. Probability of occurrence of a particular secondary structure type in proteolytic
sites was assessed in the most detail as these features are commonly used in the
field despite their modest predictive capabilities compared to other types of
structural descriptors revealed in this study. Most notably, our analysis based on
normalization for the occurrence of the three types of secondary structure elements
for each protein substrate revealed an appreciable frequency of cleavage within
certain types of β-strands.

v. Mutual dependencies (redundancies) of individual descriptors and a potential for
improving cleavage site predictions by combining descriptors were evaluated.
Based on the results obtained by three different machine learning algorithms, a
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combination of selected descriptors leads to at least a 15% improvement in the false
prediction rate.

The key specific results obtained using this approach are presented below.

Correlation of Cleavage Sites with Individual Structural Descriptors
The Student's method (t-test) was used to test the null-hypothesis that a distribution of a
particular structural descriptor is the same for cleaved vs. uncleaved peptide bonds. The
probability that this hypothesis is true is estimated by P-value. The results of t-test for best-
performing descriptors representing all three categories of structural features—exposure,
flexibility, and local interactions—are shown in Table I (results for raw and normalized
values of all structural descriptors are provided in Supplemental Files 6 and 7). The four
descriptors with the strongest statistical significance associated with proteolytic events (P-
value range 5 × 10−47 to 3 × 10−27) are protrusion index, solvent accessibility, packing, and
molecular surface accessibility. The second tier of predictors (P-value range 7 × 10−18 to 5
× 10−4) include disordered regions, depth index, B-Factor, hydrogen bonding, and loops in
the secondary structure. Similar results were generally observed for both raw and
normalized (Supplemental File 7a) values of structural descriptors. The B-factor is the one
notable exception because its significance was 17 orders of magnitude better for normalized
values (4 × 10−25 compared to 1 × 10−8).

Calculations of statistical significance of structural descriptors were performed for amino
acids in P1 subsites immediately adjacent to the cleaved peptide bond. This is a standard
approach based on the assumption of the key contribution of the P1 position as known for
sequence-based substrate preferences of many types of proteases [49,50,51]. To test the
validity of this assumption, we calculated t-test statistics for other subsites, from P5 to P5′,
using the solved structures dataset and raw values of structural descriptors. Indeed, 8 top-
scoring structural descriptors (out of 14 descriptors with P-value < 0.05) had the highest
significance values for P1 subsite. This apparent trend (illustrated in Fig. 2 for the three best
descriptors) confirms that P1 subsite make the largest contribution to the observed
associations between structural features and proteolytic susceptibility.

The general statistical approach allowed us to elucidate the significance of the differences
between distributions of the structural descriptors values among cleaved and uncleaved
peptide bonds. However, it only roughly estimates the ability of individual structural
features to predict cleavage sites. To assess the predictive capability more precisely, we
applied methodology from the machine learning theory to each structural descriptor. We
chose three evaluation metrics, F-score, F10–score, and AUC, for this task because they are
the most suitable for estimating datasets in which there is an imbalance of two classes
(intrinsic underrepresentation of cleaved peptide bonds compared to uncleaved bonds). The
complete results of calculations for raw and normalized values are presented in
Supplemental Files 8–12.

Importantly, the structural descriptors with the highest statistical association with cleavage
sites also had the best predictive capabilities (Table I). Among them, solvent accessibility,
protrusion index, packing, molecular surface accessibility, and B-factor (calculated in
normalized values) were the top performers, whereas disordered regions, hydrogen bonding,
and loops showed moderate prediction strength. The depth index was found to be a
moderate-strength predictor by F-score and AUC metrics but was ranked among the top-
scoring descriptors by the F10-score metric.

The top-ranking descriptors listed above were capable of predicting 90% of the true
cleavage sites with the cost of a false prediction rate of ~50% for other peptide bonds. The
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high rate of false positives likely originates from the intrinsic biases (such as
underrepresentation of a positive class) in our dataset. Indeed, many of the high-scoring sites
in every protein may indeed be cleavable by proteases other than those for which there is
actually documentation in the literature. Therefore, a substantial fraction of peptide bonds in
the negative class is expected to represent “hidden positives” (potentially cleavable bonds).

Utility of homology-based structural models
In contrast to predictors deduced from 3D structures, the predictive capabilities of sequence-
derived structural descriptors were relatively weak (Supplemental File 10). The t-test
applied to ~80 sequences from the dataset of protein substrates with solved 3D structures
revealed a marginal significance only for predicted solvent accessibility and predicted
disorder (see Table I). Similar results were obtained by the second method (based on AUC
and F-score metrics).

On the other hand, a comparison of the t-test statistics between solved structure and
structural model datasets revealed an appreciable significance of model-derived descriptors
and a high level of consistency between the results for the two datasets. Indeed, the ranking
order of top-scoring descriptors was essentially the same for both datasets (Table I). This
observation as well as statistically significant P-values (which may not be directly compared
between the datasets due to the difference in sample size) provided the first evidence of the
utility of homology-based 3D models for prediction of proteolytic susceptibility. These
conclusions were further confirmed by the results of the machine learning approach (Table
I).

Proteolytic events in the context of secondary structure
The results of our study qualified secondary structure features of substrate proteins as
descriptors with low to moderate predictive capabilities (Table I). At the same time, these
features are commonly used for the prediction and interpretation of proteolytic events. This
observation prompted us to perform a more rigorous analysis of the distribution and specific
properties of cleavage sites over three types of secondary structure elements (loops, helices,
and sheets). A maximum likelihood approach was used to accurately estimate probabilities
of occurrence of the three types of secondary structures in the sites of limited proteolysis
taking into account different representations of each secondary structure type in a given
protein substrate. The results of this analysis that are in good agreement for both datasets
(Fig. 4) confirmed that, indeed, loops have the highest probability to be cleaved by
proteases. A lower, but also significant, probability of helices to be presented in the sites of
limited proteolysis was alluded to in previous reports [12, 52]. At the same time an
appreciable frequency of cleavage sites in β-sheets (yet lower than in helices) is in marked
contrast with the established opinion. A visual inspection of cleavage sites in β-sheets
revealed that many of them are located along the perimeter of β-sheets. Thus, of 26 analyzed
sites, 11 were found at the ends of β-strands (Fig. 5a), and 11 were found inside β-strands
that are located at the edge of the β-sheet (Fig. 1c).

Predictive capabilities of combinations of structural descriptors
To explore and reduce the anticipated redundancy in the set of structural descriptors, we
calculated Pearson correlation coefficients for pairs of descriptors (Supplemental File 13).
Not unexpectedly, the strongest dependency (0.85) was observed between solvent
accessibility and molecular surface accessibility. Another notable correlation was observed
between protrusion index and solvent accessibility, which is consistent with previous reports
[34]. All other pairwise correlations were less pronounced.
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Based on the analysis described above, we have chosen a set of 25 descriptors deemed
statistically significant (P-value < 0.05) by the t-test on the raw values of descriptors
(calculated for the solved structure dataset). A predictive capability of this set with respect to
the binary classification problem (as formulated above) was assessed by modern machine
learning methods: Linear Kernel SVM, Gaussian Kernel SVM, Naive Bayes, and Decision
Tree. Testing of the built classification models was performed using a tenfold cross-
validation approach. The results of this analysis demonstrated that combining structural
descriptors leads to a notable improvement of predictive capabilities (Fig. 3 and
Supplemental File 14). The best results were obtained using a linear SVM classifier whose
scoring function is the weighted sum of features (structural descriptors). Overall, this
integrative approach allowed us to reduce the false prediction rate from 50% to 35% while
retaining an ability to recover 90% of true positives. As already discussed, these results, in
fact, point to approximately one-third of all peptide bonds in an average protein as being
potentially susceptible to proteolytic processing. Although this conclusion cannot be
experimentally tested (due to constrains imposed by sequence-based substrate specificity of
proteases), it is in general agreement with expectations from the overall architecture of
globular proteins.

Discussion
The aim of this study was to establish structural descriptors for classifying individual
peptide bonds within proteins and then to estimate the power of these descriptors in
predicting susceptibility to proteolysis. We reasoned that features (structural descriptors)
with high predictive power reflect the aspects of protein structure that permit proteolytic
cleavage and that these regions have a higher probability for containing regulatory cleavage
sites. To accomplish this objective, we performed a statistical analysis on a set of ~ 315
documented proteolytic events in 123 proteins with known or predicted 3D structures.

The structural descriptors can be segregated into three main categories (exposure, flexibility,
and local interactions) based on the features they describe. Based on results from two
complementary approaches (statistical hypothesis testing and machine learning–based
classification), descriptors with the highest predictive power relating protein topology are:
solvent accessibility, protrusion index, molecular surface accessibility, packing, and, to
some extent, depth index. Descriptors that reflect the flexibility of polypeptide chains (like
B-Factor and disordered regions) had the second-highest predictive power. Finally,
descriptors that convey the strength of local interactions in proteins (like hydrogen bonding
and secondary structure loops) have the lowest predictive power. The rank order of the
predictive power of these features holds for proteins of known 3D structure and for proteins
for which we had only homology-based models. Taken together, these observations suggest
that the ability of a protease to physically access a peptide bond is the most critical factor in
determining susceptibility to proteolysis. Other structural descriptors from our list did not
exhibit significant correlation with cleavage sites (Supplementary Files 6–12).

The observed consistency of all types of estimations between two protein datasets suggest
that structural models [53] can be used for cleavage site prediction almost as efficiently as
the solved structures (Table I). This is particularly important in the context of the rapidly
improving structural modeling techniques along with the expansion of structural coverage of
protein families in PDB. On the other hand, structural descriptors deduced solely from the
amino acid sequences showed relatively poor performance. The only association with
cleavage sites at the significance level comparable with genuine structural descriptors of
moderate predictive power (from the local interactions category) was revealed for predicted
solvent accessibility (Table I). This observation indicates that, despite the obvious benefits
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of utilizing readily available protein sequences, our current ability to deduce useful
structural descriptors is limited by relatively scarce 3D structural data.

Overall, the main conclusions of our study are in general agreement with the first systematic
survey by Hubbard et al. [13], which implicated exposure, flexibility, and local interactions
as important structural determinants of limited proteolysis. At the same time, though, our
statistical analysis for the first time afforded the ability to rank these three categories of
structural features by their relative significance (Table I). Among the few contradictions
between our specific findings and conclusions of Hubbard et al. [13], we assigned a high
predictive power to protrusion index, a likely result of the difference in the calculation
methods.

Another interesting finding is that B-Factor, a feature reflecting an atom's thermal motion,
showed the best correlation with proteolytic susceptibility only when normalized in the
context of each protein substrate, whereas for most other good descriptors, both normalized
and raw values produced comparable results. This observation suggests that the flexibility
observed in the actual 3D structure (which captures only a subset of many possible
conformations of the protein molecule) should be considered in relative terms within a given
structure rather than between the structures, which might be at least partially due to the
inconsistent reporting of B-Factor between structures [54].

A relative probability of proteolytic processing within different types of secondary structures
remains a subject of conflicting reports. Thus, while many early studies indicated that
proteases cleaved mostly in the loops, our analysis revealed a lower but substantial
probability of cleavage in helices. These conclusions are consistent with some of the recent
reports [12,52]. Cleavage in β-strands is still commonly perceived as highly unlikely if not
impossible [17]. Nevertheless, a more rigorous statistical analysis, which accounts for
differences in the relative content of all types of secondary structure elements in different
proteins, revealed an appreciable (albeit lower) frequency of limited proteolysis in β-strands.

The relevance of cleavage in β-strands is supported by many well-documented and
physiologically important proteolytic events. For example, the cleavage inside the edge β-
strand of the birch profilin β-sheet (Fig. 1c) was reported for mast cells alpha-chymase in
conjunction with the attenuation of allergic response [55]. Two cleavage sites at the edges of
the β-strands were reported for lactoferrin (Fig.5a) as a result of autoproteolytic activity of
this iron binding protein associated with mammalian non-immune defense against pathogens
[56]. Cleavage of an internal strand of a β-sheet, which, at the same time, is the N-terminus
of the protein, was registered for actin and two different types of proteases (Fig. 5b),
caspase-1 and Granzyme B [57, 58]. The latter protease was also reported to cleave the
internal β-strand proximal to the N-terminal strand in alpha-enolase (Fig. 5c) [58].

The examples listed above also illustrate the tendency of cleavage sites to occur either close
to the edges of β-strands or inside β-strands that are located at the edge of a β-sheet. This
trend revealed by detailed examination of our 3D structural gallery of visualized proteolytic
events (Suplemental Files 3 and 4) is consistent with some of the earlier suggestions [17]. It
likely reflects the tendency of β-sheet perimeter residues to be exposed and have lower
hydrogen bonding energy than internal residues. Interestingly, in all 4 cases (of 26
examined) of truly internal cleavage sites in β-sheets, the respective strands were located
very close to the N- or C-termini (Fig. 5b and 5c).

Among significant structural descriptors assessed by us for the first time, the most
interesting behavior was observed for the depth index, which measures the distance from the
peptide bond to the surface of the protein. When evaluated by the F10-score metric, depth
index was the most important feature for cleavage, although by other metrics it was behind
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accessibility, protrusion, and packing index. Interestingly, depth index appears to be of
particular importance for the cleavage sites with relatively low solvent accessibility. Visual
inspection of representative poorly accessible cleavage sites revealed favorable values of
depth index. Remarkably, in most of such cases, the respective peptide bonds located at
relatively low depth appeared to be “shielded” by loops with high B-Factor values. It is
tempting to speculate that the access of a protease to such a bond might be granted by the
mobility of a loop. This interpretation is consistent with the utmost importance of
accessibility (exposure) even when it is masked by “freezing” a protein in a particular
crystallizable conformation. Using a combination of descriptors (as opposed to any single
descriptor) opens the possibility of resolving at least some of such difficult cases, although it
would likely require employment of additional rule-based approaches.

However, the conventional machine learning classification methods used in this study
proved the concept that a combination of structural descriptors leads to substantial
improvement of the accuracy of predicting a cleavage site. Thus, the linear SVM approach,
despite the apparent simplicity of its scoring method, allowed us to predict ~90% of
cleavable bonds while increasing the number of bonds excluded from consideration by 15%
compared to the best individual descriptor.

Overall, this study provides a statistical foundation for the automated and accurate
prediction of regions within proteins that have a high propensity for cleavage by
endopeptidases. Our analysis suggests that approximately one-third of all peptide bonds in
an average protein have the potential to be proteolytically processed based on their structural
properties. By combining structure-based predictions common for many proteases with
sequence-based preferences of a given protease, we expect to achieve more-accurate
mapping of individual cleavage sites. In a general sense, this combined strategy has shown
promise when applied to caspases [59,60]. The main distinction of the analysis described
here is that it provides a solid statistical foundation for the extraction of structural features of
general utility, potentially applicable to numerous regulatory proteases implicated in a
variety of pathways and syndromes. These findings set the stage for the development of a
new generation of software tools for accurate structure-based predictive modeling of
regulatory proteolysis and other post-translational modifications. Such computational tools
would find numerous applications in proteomics research, for example in a rapidly
developing field of degradomics or N-terminomics [61,62,63,64].

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Examples of the mapping of proteolytic events into 3D structure of substrate along with
visualization of selected structural descriptors. Values of the solvent accessibility, B-Factor,
and hydrogen bonding energy were color-mapped into substrate's structure for the cases of
proteolytic processing of antithrombin by thrombin [65] (a), actin by Bacteroides fragilis
enterotoxin [66] (b), and human profilin by mast cell alpha-chymase [55] (c).
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Figure 2.
Structural importance of the subsites around the cleavage site. Three bar plots demonstrate
distribution of P-values over subsites for three structural descriptors: solved accessibility (a),
protrusion index (b), and packing (c). The significances of P5–P5′ subsites were estimated
by t-test for the raw values of structural descriptors calculated for the solved structure
dataset.
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Figure 3.
Estimations of the prediction capabilities of the three individual structural descriptors and
the combined descriptors set, presented by ROC curves of the corresponded classifiers.
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Figure 4.
Probabilities of the particular type of secondary structure in the sites of limited proteolysis
calculated by maximum likelihood method for solved structure (a) and structure models (b)
datasets.
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Figure 5.
Examples of cleavage sites in β structures. (a) Two proteolytic events located at the ends of
the β strands were reported to be connected with the autoactivation of lactoferrin [56]. (b)
The cleavage site in the buried internal β-strand of the β-sheet of actin protein, which is
located close to the N-termini, was registered both for caspase 1 and for Granzyme B
proteases [57, 58]. (c) Another example of the internal β-sheet cleavage, which is located
inside the β-strand and next to the N-terminal β-strand of the alpha-enolase protein [58].
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