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INTRODUCTION

The exponential growth in the volumes of data-
bases compiling information about DNA sequences
exceeds considerably the capabilities of their experi-
mental functional annotation (description of the func-
tional characteristics). So far, 335 bacterial, 41
eukaryotic, and 27 archaebacterial genomes have been
sequenced completely and 1596 similar projects are in
progress (according to the Genome OnLine Database,
GOLD [1]). Preliminary annotation of the sequences
by computational methods is part of the routine proce-
dures in such projects. In addition to the primary
sequences, knowledge about protein spatial structures
is most important for understanding their functions. In
2000, the international project on structural genomics
was launched [2], whose goal is to resolve a represen-
tative set of spatial structures for proteins of various
organisms. The main stages of this project are (1)
grouping all known protein sequences into families,
(2) choosing one or several representatives from each
family as a target, (3) resolving the spatial structure of
the target by X-ray analysis or NMR, and (4) con-
structing the spatial structure models for other repre-
sentatives of each family. Implementation of this

project will give the structures of many proteins with
not only unknown localization of their active centers
and/or other functional sites, but frequently with
unknown overall function itself; moreover, these pro-
teins have no well-studied homologs. Various compu-
tational methods are used in such cases for searching
for the functional sites.

Russell et al. [3] have reviewed a number of meth-
ods combining the information about a sequence
alignment with the data on spatial structures. These
methods search for the regions important for the pro-
tein function or specificity on the protein surface. For
example, analysis of the Mj0577 structure, resolved
within the framework of the Structural Genomics
Project by the ConSurf method [4], assisted in detect-
ing the ATP-binding site and demonstrated a func-
tional importance of the contact interface between
homodimer subunits [5].

Several methods used in searching for functional
sites, such as ConSurf [4] and the method developed
by Aloy et al. [6], postulate that a position is function-
ally important when it is conserved in alignments of
related sequences. The methods by Ma et al. [7] and
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Landgraf et al. [8] use a milder structural conservation
instead of sequence conservation; however, the gen-
eral idea is the same. Del Sol Mesa et al. [9] have
introduced the conception of correlated mutations in a
sequence (simultaneous mutations at remote positions
in one alignment or different alignments) and consid-
ered the positions affected by such mutations during
evolution to be functionally important. Lichtarge et al.
[10, 11] have developed an evolutionary trace method,
whose essence is grouping proteins at various similar-
ity levels to detect the conserved positions (CPs) for
each group. The sequence of the positions conserved
in a group is called its evolutionary trace. The evolu-
tionary traces are compared for different groups, and
the positions contained in the evolutionary traces of a
large number of groups are considered significant.

Hannenhalli and Russell [12] and Mirny and Gel-
fand [13] have developed methods searching for spec-
ificity determinants (to ligand, DNA, other protein,
etc.) in protein sequence alignments: the alignment is
considered prepartitioned into groups of proteins with
the same specificity, and the positions conserved
within the specificity groups but differing between
groups are considered the specificity determinants.
Based on these methods, we have proposed the algo-
rithm SDPpred [14], which follows the main features
of the algorithm described in [13] but is more appro-
priate technically for analyzing large data massifs, as
it has an automated procedure for threshold selection
and better takes into account the evolutionary distance
between proteins and amino acid similarity.

In this work, we present a new algorithm, SDPsite,
for predicting the functional sites in proteins. This
algorithm combines the features of many methods
mentioned above, namely, the CPs are detected in

sequence alignment; specificity determinants are pre-
dicted based on the alignment and phylogenetic tree
(for this purpose, a specialized procedure of auto-
mated search for specificity groups has been devel-
oped); and the best cluster of specificity determinants
and CPs is found using the spatial structure of one of
the proteins. SDPsite is publicly available at
http://bioinf.fbb.msu.ru/SDPsite.

SDPsite was tested using the family of bacterial
transcription factors LacI, subtilisin-like proteases,
and 68 domains from the Conserved Domain Data-
base (CDD).

ALGORITHM

The algorithm for prediction of a functional site
consists of three parts: (1) prediction of specificity
determinants (using an automated partitioning of an
alignment into specificity groups), (2) prediction of
CPs, and (3) selection of the best cluster.

 

Prediction of Specificity Determinants

 

The algorithm predicting specificity-determining
positions (SDPs) is described in [14]. The input data
for the prediction is an alignment of amino acid
sequences where the proteins are divided into speci-
ficity groups. It is assumed that a specificity group
contains proteins with the same substrate specificity
and the specificities of proteins belonging to different
groups are distinct. Briefly, the algorithm is as fol-
lows. Each position in the alignment is considered
separately. To assess whether a particular position is
SDP, the following mutual information is used:
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Here, a number of corrections, discussed in detail in
[14], are introduced to take into account the specific
features of actual biological data. The mean of a col-
umn and the standard deviation of the distribution of its

expected informational content,  and ,
are calculated by random shuffling followed by com-
puting the statistical significance for each position:
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To determine the number of SDPs among the most
significant positions, an original procedure based on
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where

Thus, a set of 

 

k

 

*

 

 SDPs is obtained. The probability

 

(4)

 

providing this minimum is named the statistical sig-
nificance of the set of 

 

k

 

* positions.

 

Automated Partitioning into Specificity Groups

 

A wide application of the SDPsite algorithm
requires a procedure that provides an automated parti-
tioning of an alignment into specificity groups. We
used the technique analogous to that used in the evo-
lutionary trace method [10]. We consider an unrooted
initial tree and assume that the root is in the middle of
the longest way from one leaf to another. Then, we
consider a set of groups generated by dissecting the
tree at a certain distance from the root (Fig. 1). In this
process, all groups containing less than three
sequences are rejected. SDPs are found for each group
as described in [14], and the statistical significance for
the SDP set 

 

P

 

*

 

 is calculated using Eq. (4). The set
with the minimal 

 

P

 

*

 

, i.e., the least probable set of
SDPs, is considered the best.

However, the 

 

Z

 

 values, calculated using Eq. (2),
need a correction: if sequences are added to the align-
ment without changing the number of groups but
increasing uniformly the number of sequences in each
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group, the maximal Z value grows, and its growth is
well approximated with a logarithmic function (data
not shown). This corresponds to the understanding of
statistical significance from the standpoint of common
sense. However, the increase in statistical significance
for the groups with a large number of sequences pre-
vents a correct comparison of the partitions of the
same alignment into different numbers of groups: a
partition into “thicker” groups always wins. To com-
pensate for this logarithmic growth, we introduce the
correction

Z := Z/log(mean group thickness). (5)

Prediction of Conserved Positions

Various approaches to detection of CPs are
reviewed by Valdar [16]. In this work, we used the
Sander–Schneider conservation measure [17], calcu-
lating the conservation of position p as
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where N is the number of sequences in an alignment;
d(si, sj) is the distance between sequences si and sj,

amounting to 1 – ; sk(p) is the amino

acid at position p of sequence sk; and M(α, β) is the
matrix of amino acid substitutions (in this case, we
used the matrix BLOSUM62 [18]).

As is indicated in the review [16], this conservation
measure is sufficiently satisfactory from the common
sense standpoint: its range is continuous and limited
(the segment from 0 to 1); it takes into account the fre-
quencies of amino acids in a column as well as the fre-
quencies of amino acid substitutions and their physic-
ochemical properties with the help of the matrices of
amino acid substitutions; and it is normalized taking

percent identity
100

--------------------------------------

into account the alignment degeneration (i.e., the dis-
tances between sequences).

The statistical significance is calculated for each
Cp. We introduce the background distribution Cp as
conservation of the columns composed of random
positions of each sequence in the alignment. Thus, we
calculate 10,000 random values of the conservation

 for each Cp and then the statistical significance

(7)

Here,  accounts for the conservation of columns
in the set of unaligned sequences. As the alignment of
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Fig. 1. Grouping in the evolutionary trace method. Two pos-
sible groupings are shown with dotted and dashed lines.
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two random sequences has a nonzero weight, we cen-
ter the statistical significance to eventually obtain the
following equation:

(8)

Then we apply the same procedure for selecting
the number of significant positions as when predicting
SDPs (Eqs. (3) and (4)).

Segregation of the Best Cluster

To predict the SDPs and CPs, the algorithm
requires only an alignment of protein family
sequences and the corresponding phylogenetic tree.
To select the best cluster, the algorithm additionally
requires the 3D structure of a protein from this family.
If a family contains several proteins with the deter-
mined 3D structures, the resulting cluster may depend
on the structure chosen. However, the tests with actual
examples demonstrate that the best clusters for differ-
ent structures overlap sufficiently (data not shown).

On a specified 3D protein structure, our algorithm
finds the residues corresponding to the predicted
SDPs and CPs and clusters them spatially according to
the nested cluster algorithm based on the graph den-
sity [19]. Nested clusters are constructed as follows.
First, all graph nodes are considered (in our case, they
correspond to the set of all SDPs and CPs on the 3D
structure), i.e., the cluster H0. For each node i, its
weight is calculated according to the following equa-
tion:

(9)

where j runs over the set of the rest H0 nodes and ωij is
the weight of the edge between the nodes i and j, cal-
culated as

(10)

where dij is the Euclidian distance between the closest
atoms of the amino acids that correspond to the nodes
i and j; R = 5 Å is the mean distance between the atom
centers that provide a contact of these atoms; and D =
15 Å is the distance over which the effect of an atom
extends. R and D are constants; their values were
selected from empiric and heuristic considerations.
λi = 0.5, if the node i corresponds to CP; otherwise it
equals unity. Thus, the CP significance is artificially
underrated. This is performed in order to prevent the
algorithm from selecting the geometric core (the
group of conserved residues necessary for forming a
correct 3D protein structure) as a significant cluster.
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Then the set of nodes F0 ⊂ H0 is found for which µ
is minimal and equals . The cluster H1 = H0\ F0 is
constructed; this procedure is repeated until an empty
set is obtained at a certain step. Thus, a family of
nested clusters H0 ⊃ H1 ⊃ K ⊃ HN ⊃ ∅ is generated.

The cluster n for which  = max{ |k = 0, …, N}
is selected as the most significant cluster. Hereinafter,
we call this cluster the best cluster.

In this work, we considered two most significant
clusters. The second cluster was found according to
the same algorithm with a preliminary elimination of
all nodes contained in the first cluster from H0 (the
second best cluster).

The algorithm for prediction of the functional site
was named SDPsite and realized as a web server,
available at http://bioinf.fbb.msu.ru/SDPsite.

RESULTS AND DISCUSSION

The algorithm SDPsite was tested using three
examples. SDPsite was applied to the LacI family of
bacterial transcription factors, regulating catabolism
of various sugars and several other metabolic path-
ways. Extensive data are available on the specificities
of various proteins from this family [20] as well as on
the effects of mutations of each residue on the protein
function [21]. The results of SDPsite application fit
well the experimental data. The operation of SDPsite
was compared with that of other methods predicting
functional sites [22]. SDPsite displayed better results
than the other methods when using the examples con-
sidered in this work, namely, LacI and subtilisin-like
proteases. SDPsite was applied to a large number of
families from the NCBI CDD. This database contains
the alignments of protein domains where certain posi-
tions are indicated as “features:” the active center, the
contact interface with the ligand, a phosphorylation
site, etc. We assume that these particular features are
functionally important positions. Although we inevi-
tably underestimate our own results when using this
approach (since the positions not indicated as features
may also be functionally important, whereas the set of
features includes certain positions that are beyond the
definition of a functional site, for example, phospho-
rylation sites, glycosylation sites, etc.), SDPsite gives
satisfactory results.

Application of SDPsite to the Bacterial LacI 
Transcription Factor Family

An alignment of regulators from the LacI family
containing 125 sequences was considered. The align-
ment was divided into the following specificity groups
differing in the type of effector and DNA operator
sequences: PurR, ScrR, RbsR(EC), GntR, RbsR(PP),
GalR, MalR, CytR, CcpA, and FruR. This grouping

µ0
min

µn
min µk

min
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was obtained by analysis of the genome context and
regulatory sites and by comparative genomics meth-
ods [20]. The evolutionary relationships of these pro-
teins and their grouping are shown in a phylogenetic
tree (Fig. 2a). We used the structure of E. coli PurR
(PDB identifier 1bdh) for visualizing the predictions
and detecting the clusters.

The above partition into specificity groups was not
used for predicting SDPs; on the contrary, the group-
ing was made automatically. In this process, the
groups virtually coincided with the initial groups
(Table 1). The predicted positions are shown in Table 2
(numerated as in E. coli PurR) and Fig. 2b. As is evi-
dent, the majority of predicted SDPs are in the regions
of contacts with effector or DNA or the interface
between the subunits. This corresponds to an intuitive
conception that the amino acid residues responsible
for the specific interaction of the protein with its
ligand or another subunit must be in these particular
regions. CPs also occur in these regions (especially in
the interface with DNA); however, they are consider-
ably more numerous inside the protein globule, where
they are inaccessible for the solvent and, conse-
quently, unable to be directly involved in the protein
function; presumably, they serve for stabilization of

the spatial structure. The two best clusters found by
SDPsite are in the two most important sites of this pro-
tein—the DNA-binding domain and the effector-bind-
ing pocket.

Suckow et al. [21] described the effect of a muta-
tion of each amino acid residue in the LacI sequence
on its function. All residues are divided into classes
depending on whether a particular residue could be
substituted and what would be the effect of the possi-

MalR

CytR

CcpA

FruR

ScrR

GalR

RbsR(PP)
RbsR(EC)

PurR

GntR Effector

Second best
cluster

Best cluster

DNA

(‡) (b)

Fig. 2. (a) Phylogenetic tree of the LacI family. (b) SDP (light gray) and CP (dark gray) in the structure of E. coli PurR (PDB iden-
tifier 1bdh).

Table 1.  Specificity groups separated during automated
grouping

Group in automated
grouping

Corresponding group
separated in [20] 

Group 1 CcpA

Group 2 CytR

Group 3 GntR

Group 4 FruR + ScrR

Group 5 MalR

Group 6 GalR

Group 7 RbsR(PP)

Group 8 PurR + RbsR(EC)
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ble substitution. Based on these classes, we parti-
tioned all amino acid residues into five groups: (1) res-
idues whose substitution has no effect on the protein
function; (2) residues that can be substituted only with
small amino acids to retain the protein function;
(3) residues that do not contact directly the effector
but their substitution impairs its binding or signal
transduction; (4) residues that do not contact directly
either the effector or DNA and cannot be substituted
without a loss of the function; and (5) residues that
contact directly the effector or DNA and cannot be
substituted without a loss of the function. The distri-
bution of all amino acid residues of the protein and the
positions predicted for these groups are shown in Fig. 3.
It is evident that the fractions of SDPs and CPs in the
groups most important for the protein function (4 and
5) are higher than average and the fraction of clusters
is even higher. On the other hand, the more significant
the group for the protein function is, the larger the rel-

ative number of predicted positions it contains is and
the larger the portion of such positions in clusters.

Comparison of SDPsite with Other Methods

Soyer and Goldstein [22] have compared several
methods searching for functional sites with the example
of the LacI and subtilisin-like protease families, namely,
computing the frequency of the most common amino
acid [16], the conservation index based on entropy [16],
the Valdar–Thornton conservation index [16], the evolu-
tionary trace method [10], ConSurf [4], the likelihood
logarithm calculated using PAML [23], and the evolu-
tionary model of site classes [22]. We compared the
results of SDPsite with those reported in [22].

As is mentioned above, the complete data on the
effect of a substitution of each residue on the protein
function are available for LacI [21]. In the case of sub-
tilisin, there are also extensive data (for approximately
half residues of the protein) on the effects of muta-
tions at various positions on the overall function [24].
The rest positions either may be unimportant for the
function or have never been studied. We assume fur-
ther that they are unimportant and, presumably, artifi-
cially decrease the quality of our predictions.

Alignments for these tests were constructed as
described in [22]. BLAST was applied to search the
SwissProt database for the proteins similar to E. coli
(P03023) LacI with the condition E-value > 0.001; 75
sequences were extracted. Upon discarding the
sequences with large terminal deletions, the set con-
tained 70 sequences from 24 bacterial genomes with
an average similarity to E. coli LacI of 23.5%. In the
case of subtilisin-like proteases, we took the family
HBG020722 from the database HOBACGEN release
10 [25]. This family contains 80 sequences with a
35% average similarity to Bacillus amyloliquefaciens
subtilisin. Ten sequences were discarded from the
alignment because of large terminal deletions; only
the sequence fragment corresponding to the active
enzyme was analyzed.

The predicted positions superimposed on the struc-
ture of E. coli PurR in the case of LacI and B. amy-
loliquefaciens subtilisin in the case of subtilisin-like
proteases are shown in Fig. 4. It is evident that the

Table 2.  Positions predicted for the LacI family (numbered as in E. coli PurR)

Type of position
Number

of predicted
positions

Numbering in E. coli PurR

SDP 20 5, 15, 16, 20, 25, 27, 53, 55, 91, 96, 123, 144, 145, 146, 147, 160, 162, 284, 294, 323

CP 40 3, 6, 7, 8, 11, 12, 13, 14, 17, 19, 23, 28, 32, 35, 36, 45, 47, 63, 74, 82, 90, 117, 118, 141, 
143, 158, 161, 181, 186, 200, 242, 244, 248, 253, 266, 271, 274, 285, 287, 298

Best cluster 19 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 17, 19, 20, 25, 27, 28, 32, 35, 36

Second best cluster 4 144, 145, 146, 147

1

2

3

4

5

0 0.1 0.2 0.3 0.4 0.5 0.6

All positions;
SDP
CP
Best cluster
Second best
cluster

Fig. 3. Distribution of the predicted positions through
importance groups for the sample from [20]: (1) residues
whose substitution has no effect on the protein function; (2)
residues that can be substituted only with small amino
acids; (3) residues that do not contact directly the effector
but whose substitution impairs its binding or signal trans-
duction; (4) residues that do not contact directly the effector
or DNA and cannot be substituted; and (5) residues that
directly contact the effector or DNA and cannot be substi-
tuted. The fraction of groups 4 and 5 is higher among the
clustering residues.
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cluster of the DNA-binding domain is lost in LacI;
however, the overall prediction is good. In the case of
subtilisin, the SDP prediction is weak; therefore, the
best cluster is mainly composed of CPs.

The ratio of sensitivity to overprediction is used in
[22] as a measure for evaluating the prediction quality.
The sensitivity is calculated as TP/(TP + FN), where
TP (true positives) are the residues predicted by the
method and are actually important, and FN (false neg-
atives) are the residues unpredicted by the method but
are actually important. The overprediction is calcu-
lated as FP/(FP + TN), where FP (false positives) are
the residues predicted by the method but are unimpor-
tant, and TN (true negatives) are the residues unpre-
dicted by the method and are unimportant. All the
methods compared do not predict clusters of impor-
tant residues but give a continuous list of residues
sorted according to the degree of their predicted
importance. Therefore, the ratio TP/(TP + FN) versus
FP/(FP + TN) is not a point but a plot, called an ROC
(receiver operating characteristic) curve. All methods
give satisfactory predictions for LacI: the sensitivity
exceeds the overprediction over a wide range; how-
ever, all predictions are no better than random ones in
the case of subtilisin. It has been assumed that such
unsatisfactory results for subtilisin are connected with

an improper alignment or an overall low similarity
between proteases of this type [22].

The analysis using SDPsite predicts not only the
relative significance of every position, but also the
optimal number of positions; therefore, the SDPsite
prediction is a point on the ROC plot. The values of
sensitivity, overprediction, and specificity for both
families are summarized in Table 3. In all four cases,
the SDPsite predictions fall into the lower left corner
of the ROC curve and are, at least, not lower than the

Best cluster

Best cluster

Catalytic

Substrate-
recognizing
loop

(‡) (b)

center

Fig. 4. Predicted positions in the structures of (a) E. coli PurR (PDB identifier 1bdh) and (b) B. amyloliquefaciens subtilisin (PDB
identifier 1to2): SDPs are light gray and CPs, dark gray.

Table 3.  Results of SDPsite operation in tests [22]

LacI Subtilisin
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A 0.007 0.06 0.75 0.024 0.17 0.57
B 0.05 0.07 0.5 0.043 0.128 0.43

Note: A, a wide range of significant positions (LacI, groups 2–5;
subtilisin, all positions with observed changes in activity)
and B, a narrow range of significant positions (LacI, group
5; subtilisin, the positions involved in catalytic activity or
substrate recognition).
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predictions by the other methods tested. SDPsite dem-
onstrates a rather good specificity (the ratio of TP to
the total number of predicted positions). The position
in the lower left corner means that SDPsite displays a
rather low sensitivity according to these tests. This
may stem from the fact that large enough sets of posi-
tions were considered important in these tests,
whereas not all of these positions are directly involved

in the protein function. For example, all conserved
positions responsible for stabilization of the overall
protein structure are considered important for LacI.
Note that the majority of methods compared in [22]
display not only a good sensitivity, but also a high
overprediction rate. On the contrary, SDPsite is pur-
posefully designed to decrease the overprediction rate
as low as possible.

Table 4.  Test sample from CDD

Domain name
Align-
ment 
length

Total
sequences

PDB
identifier  Chain Domain name Alignment 

length
Total

sequences
PDB

identifier Chain

35EXOc 112 55 2KZM A LIGANc 253 44 1DGS A

53EXOc 194 56 1EXN B LMWPc 94 72 1D1P B

ACTIN 296 45 1NM1 A MADS 59 91 1MNM B

ADF 108 51 1COF A MYSc 472 43 2MYS A

aklPPc 301 29 1ELZ A PI3Kc 299 21 1E8X A

Aminopeptidase 59 18 1B65 A PIPKc 264 16 1BO1 A

AP2 59 23 1GCC A PLCc 184 14 1GYM A

AP2Ec 188 40 1QUM A PNPsynthase 230 18 1HO4 A

Arfaptin 194 9 1I4D A POLXc 294 10 2BPF A

BPI 123 31 1BP1 A PP2Ac 235 19 1AUI A

C2 72 100 1DQV A PP2Cc 158 100 1A6Q A

CAP_ED 83 100 1RGS A PRCH 224 11 1PRC H

CASc 197 52 1CP3 A PROF 107 26 1D1J D

CBM9 144 19 1I82 A PTB 90 51 2NMB A

CH 82 53 1AOA A PTPc 180 99 2SHP A

DED 62 32 1A1Z A PTS_IIA_fru 107 99 1A6J B

DEXDc 82 100 1D9X A PTS_IIA_lac 97 27 1E2A A

DSPc 112 51 1VHR A PTS_IIA_man 97 43 1PDO A

DSRM 52 100 1DI2 A PTS_IIB_glc 74 88 1IBA A

ENDO3c 115 100 1MUY A RA 74 48 1EF5 A

eu-GS 442 10 2HGS A RhoGAP 138 75 1AM4 A

fer2 60 100 1B9R A S4 51 100 1DM9 B

FGF 107 31 1QQK A SAM 53 99 1B0X A

FH 59 48 1E17 A Sec7 165 34 1PBV A

G-α 302 63 1AZT B SEC14 123 100 1AUA A

GMPK 93 57 1GKY A SERPIN 239 91 1OVA A

GYF 55 21 1GYF A SH2 54 100 1AYA A

H15 79 70 1HST A SNc 91 30 2SNS A

HDc 85 100 1F0J A TBOX 174 32 1XBR A

HECTc 313 48 1C4Z A TNF 96 33 1A8M A

HELICc 104 100 1D2M A Topo6_Spo 245 25 1D3Y B

HPT 87 71 1QSP A UBCc 129 70 2UCZ A

HTH_ASER 66 100 1SMT B vWFA 83 100 1DZI A

KISc 224 52 3KAR A XPG 249 34 1A76 A



MOLECULAR BIOLOGY      Vol. 41      No. 1      2007

COMPUTATIONAL PREDICTION OF FUNCTIONAL SITES 145

Application of SDPsite to a Set from CDD
When analyzing CDD, we considered the same set

of domains as Panchenko et al. [26]. These domains
have one or several features, and the corresponding
alignments contain at least one protein with a known
3D structure. In total, 68 domains were left upon dis-
carding the alignments with a length of less than 50
amino acid residues or with a tree whose structure pre-
vented separation of at least two groups of three or
more sequences (Table 4). Only the positions marked
with a feature were considered functionally signifi-
cant. This gives a lower level of quality estimate for
the method, as certain residues that were not marked
with a feature might also be important, whereas some
features might not satisfy an intuitive definition of a
functional site, for example, the sites for amino acid
modification (phosphorylation, glycosylation, etc.).
Thus, the actual sensitivity of the method is not lower
and the overprediction rate is not higher than the val-
ues determined in such a way.

The ratio of sensitivity TP/(TP + FN) (the ordinate)
to overprediction FP/(FP + TN) (the abscissa) is
shown in Fig. 5. As is evident, this ratio for CPs and
clusters is, on average, better than the random choice
of positions (the diagonal) despite the above short-
comings of such evaluation. However, it is not so evi-
dent for SDPs. Presumably, this is connected with the
fact that only some of the families considered actually

contain groups with different specificities or that the
majority of annotated features must be implicitly con-
servative in the total family. The CPs demonstrate a
rather good ratio of sensitivity to overprediction (the
majority of points fall into the upper triangle); how-
ever, the clusters display the best sensitivity on aver-
age. Figure 6 shows the number of domains for which
the SDPsite predictions exceed a certain sensitivity
threshold. It is evident that the clusters surpass the
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Fig. 5. Ratio of sensitivity to overprediction rate for SDP, CP, and the best cluster for the considered domains from CDD. The diag-
onal corresponds to a random choice of positions.
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Fig. 6. Number of CDD domains for which SDPsite predic-
tions exceed a specified sensitivity level.
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CPs virtually over the entire range of interesting pre-
dictions (the sensitivity exceeds or equals 0.4). More-
over, the overprediction rate, in no case, exceeds 0.3.
The mean sensitivity for clusters amounts to 0.35; for
five families, the sensitivity is 1; the mean sensitivity
for CPs is 0.30; and the number of families with a sen-
sitivity of 1 is three.

CONCLUSIONS

This work describes a new method searching for
the functional sites, SDPsite. This method combines
many features of earlier methods searching for the
functional sites, such as a search for conservative
positions and selection of the best cluster on the pro-
tein structure. The specific feature of our method is the
prediction of SDPs and the related automated partition
of an alignment into specificity groups.

We compared this method, first, with experimental
data (with the example of LacI) and, second, with
other analogous methods (with the example of LacI
and subtilisin) and performed a mass test with a large
number of families from CDD.

The main difficulty when assessing the methods
for prediction of functional sites is the absence of reli-
able controls. In the case of the LacI family, there are
virtually complete data on the effect of mutations of
various residues on the protein function, while the sit-
uation is completely different for other families. In
this work, we assumed that all residues not described
in the input data are insignificant for the function and
decided not to separate the residues according to their
functional types, which may essentially underrate the
prediction quality. Nonetheless, the prediction results
obtained using SDPsite fit well the control data.

Analysis of the predictions obtained for the LacI
family and subtilisin-like proteases suggests that,
when a family contains distinct specificity groups (as
for LacI), SDPs are predicted well and play the pri-
mary role when selecting the best cluster. Correspond-
ingly, the predicted functional site was localized to the
region of specific interaction. When the specificity
groups are indistinct (as for proteases), CPs play the
main role in selecting the best cluster.

Comparison of SDPsite with other methods dem-
onstrates that SDPsite operates similar to the best
methods and, likely, even better with respect to the
ratio of sensitivity to overprediction. However, SDP-
site demonstrates a sufficiently low sensitivity. In part,
this may be connected with the ideology of SDPsite: a
considerably large number of SDPs and CPs predicted
at the first stage are discarded when forming the best
cluster with the aim to minimize overprediction. How-
ever, another explanation is possible: when studying
the effect of mutations on the function, a large number
of positions that have no direct effect on the function
are considered important. It is directly confirmed by

the fact that, when the class of significant positions for
LacI was narrowed to the essential positions directly
involved in the interaction with effectors or DNA, the
fraction of predicted positions increased to one-third.

When analyzing the data obtained for the domains
from CDD, we see a rather large number of results at
the level of a random noise (left lower quarter). Espe-
cially bad results were obtained when considering
SDP only. This may be connected with the fact that
many alignments considered contained a small num-
ber of sequences and did not contain proteins with dif-
ferent specificities. In this case, the prediction of
SDPs has no sense. The poor results for CPs and clus-
ters may be explained by the properties of certain
annotated features; for example, phosphorylation sites
are weakly conserved in related proteins. In the case
when this is the only annotated specific feature, SDP-
site will most likely find the best cluster in some other
region of the protein, thereby leading to a very poor
prediction (a zero sensitivity). On the other hand, a
sufficiently large number of predictions have a sensi-
tivity exceeding 0.4 and an overprediction rate below
0.3, which may be considered a good result.

The goal of structural genomics is identification
and functional description of as large a number of pro-
teins from various organisms as possible. As proteins
belonging to poorly studied families and having no
close homologs with the known structures are fre-
quently chosen for structural analysis, their functional
annotation by the available methods (a search for sim-
ilar well-studied sequences or structures) is difficult.
We believe that SDPsite can be successfully applied to
search for functional sites in such structures and, con-
sequently, useful for their annotation.
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