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INTRODUCTION

One of the main mechanisms regulating gene
expression in bacteria is linked with the generation of
alternative structures in mRNA. In one of the confor-
mations the gene is repressed as a result of premature
transcription termination or inhibition of translation
initiation. Selection of the conformation is determined
by the concentration of a target metabolite. Depending
on how the concentration of a target metabolite acts on
the formation of structural elements, several mecha-
nisms are distinguished in the regulation involving clas-
sic attenuators, which use the ratio of transcription and
translation rates; protein-binding elements; tRNA-
binding elements (T-boxes); and riboswitches, which
directly, without any mediator, bind small molecules.

A regulatory element contains a sensory structure,
which indirectly defines the concentration of a metab-
olite, and a regulatory structure, which directly acts on

gene expression. The regulatory structures are divided
into two major groups (Table 1): terminators (their
generation results in repression due to premature ter-
mination of transcription) and sequesters (hairpins
that overlap the Shine–Dalgarno box or the start
codon and prevent translation initiation). RNA regula-
tory structures may function as activators or repres-
sors, depending on the location of sensory and regula-
tory structures and the presence of other structures
(Fig. 1, Table 2). In the simplest case the sensory
structure coincides with the regulatory one (Fig. 1a).
The binding with a coregulatory molecule stabilizes
the structure and prevents translation of the gene. If
the sensory structure is alternative to the regulatory
one, the whole element functions as an activator: the
binding with a coregulator stabilizes the sensory
structure and prevents the generation of a regulatory
hairpin (Fig. 1b). Finally, if there is a hairpin that is
alternative to the regulatory one (antiterminator or
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Table 1.

 

  Classification of regulatory structures and examples

Type of regulation Premature termination of transcription Inhibition of translation initiation

Repression: A sensory 
structure coincides 
with a regulatory one

Does it not exist? Riboswitches in actinobacteria.
Thermosensors.
Ribosomal proteins regulating their 
own operons.
TRAP (several genes of 

 

Bacillus

 

 spp.)

Activation: A sensory 
structure is alternative 
to a regulatory one

Activating riboswitches (lysine catabolism, purine export).
Proteins of the BglA family, acting as antiterminators of cat-
abolic operons

Operons of resistance to macrolide anti-
biotics and chloramphenicol

Repression: A sensory 
structure is alternative 
to an antiregulatory one

Riboswitches of bacteria from the 

 

Bacillus

 

/

 

Clostridium

 

 
group.
PyrR, a regulator of the 

 

Bacillus subtilis

 

 pyrimidine operon
T-boxes of bacteria from the 

 

Bacillus

 

/

 

Clostridium

 

 group
Attenuators of the amino acid operons

Riboswitches of proteobacteria.
TRAP (the 

 

trp

 

 operon in 

 

Bacillus

 

 spp.)
T-boxes of actinobacteria
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antisequester) and a sensory structure that is alterna-
tive to this hairpin, the regulator functions as a repres-
sor (Fig. 1c).

RIBOSWITCHES

Riboswitches were recently discovered, but are the
most widespread and, possibly, the most ancient RNA

regulatory elements. Computational analysis has
played an important role in their discovery. In 1999, it
was found that highly conserved structures precede
the operons of riboflavin biosynthetic genes and func-
tion as regulators, binding directly with small mole-
cules [1]. Further analysis has revealed that the struc-
tures contain sites complementary to potential regula-
tory hairpins, terminators or sequesters. Therefore, it

 

Table 2.

 

  Riboswitches

Riboswitch Methabolic system Cofactor Genome Reference

RFN element Riboflavin biosynthesis and 
transport

FMN (flavin mono-
nucleotide)

 

Bacillus

 

/

 

Clostridium

 

 group, proteo-
bacteria, actinobacteria, other bacteria

[1–4]

THI element Biosynthesis and transport 
of thiamine and precursors

TPP (thiamine pyro-
phosphate)

 

Bacillus

 

/

 

Clostridium

 

 group, proteo-
bacteria, actinobacteria, cyanobacteria, 
other bacteria, archaebacteria (thermo-
plasmata), plants, fungi

[3, 7, 8, 34, 38]

B12 element Cobalamine biosynthesis, 
cobalt transport, cobalami-
ne-dependent enzymes

Coenzyme B12 (ade-
nosylcobalamine)

 

Bacillus

 

/

 

Clostridium

 

 group, proteo-
bacteria, actinobacteria, cyanobacteria, 
spirochetes, other bacteria

[11, 12, 30, 
33]

S-box
(SAM-I)

Methionine and cysteine 
metabolism

SAM (S-adenosylme-
thionine)

 

Bacillus

 

/

 

Clostridium

 

 group, other bac-
teria

[20–23, 29, 
32]

SAM-II Methionine metabolism S-adenosylmethionine

 

α

 

-proteobacteria [25]

LYS element, 
L-box

Lysine metabolism Lysine

 

Bacillus

 

/

 

Clostridium

 

 group, Entero-
bacteriae, other bacteria

[18, 19, 31]

G-box Purine metabolism Purines

 

Bacillus

 

/

 

Clostridium

 

 group, other bac-
teria

[14, 15, 37]

 

gcvT

 

Glycine catabolism Glycine

 

Bacillus

 

/

 

Clostridium

 

 group [27]

 

glmS

 

(ribozyme)
Glucosamine 6-phosphate 
synthesis

Glucosamine 6-phos-
phate

 

Bacillus

 

/

 

Clostridium

 

 group [28]
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Fig. 1.

 

 Scheme of the repressor and activator RNA structures. (a) Repressor: The sensory structure coincides with the regulatory
one; binding with a coregulatory molecule stabilizes the structure and prevents translation. (b) Activator: The sensory structure is
alternative to the regulatory one; binding with a coregulator stabilizes the sensory structure and prevents the formation of the regu-
latory hairpin. (c) Repressor: The sensory structure (antiterminator, antisequester) is alternative to the antiregulatory one; the sen-
sory regulator functions as a repressor. Left column, the sensory structure is stabilized by binding with a ligand, protein, or tRNA.
Right column, an alternative structure is formed. B1 and B2 are elements of the sensory structure; T is the terminator; and A is the
antiterminator. Regions unpaired in the given conformation are shown in brackets. AUG is the start codon; polyU is the polyuridine
sequence in the terminator. A sequester of translation initiation may play the role of a regulatory hairpin instead of a terminator.
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has been proposed that regulation is based on repres-
sion, resulting from a disbalance in the formation of
terminators–antiterminators or sequesters–antise-
questers [2]. This suggestion has been proven experi-
mentally [3]. Breaker and colleagues [4] obtained
similar results independently. Another approach was
used in this case: from a study of synthetic aptamers
(RNA structures able to bind small molecules) to a
search of natural ones [5].

These results stimulated a search for novel
riboswitches. At first the cases with uncertain or
poorly known regulatory mechanisms were consid-
ered. That made it possible to reveal thiamine [6–8],
cobalamine [9–12], purine [13–15], and lysine [16–
19] riboswitches. Investigations of S-boxes, regulat-
ing the methionine biosynthesis genes in 

 

Bacillus sub-
tilis

 

 and related bacteria, are the most demonstrative.
These structures were initially identified by a compar-
ative analysis of the

 

 met

 

 regulatory regions [20], but
the mechanism of regulation was unclear. After the
first publications on riboswitches, the same mecha-
nism was proposed for S-boxes and was promptly
confirmed [21–23].

Since all known riboswitches have highly con-
served primary and secondary structures, comparative
genomics approaches were applied for the search for
novel classes of riboswitches. Bacterial intergenic
spacers were compared within [24, 25] and between
taxonomic groups [26]. This revealed several novel
classes of riboswitches: glycine [27] and glucosamine
[28] riboswitches in Gram-positive bacteria and
another class of S-adenosylmethionine riboswitches
in 

 

α

 

-proteobacteria [25]. Moreover, the conservation
and length of a signal makes it possible to identify
novel riboswitches in different genomes, thereby,
allowing a prediction of the function of their target
genes coding for enzymes and, especially, transport-
ers [1, 2, 7, 12, 29–33]. Thiamine riboswitches were

found in the genomes of archaebacteria [7] and
eukaryotes, including plants and fungi [34]. The pres-
ence of riboswitches in the metagenome of the Sar-
gasso Sea was predicted [35]. As expected, thiamine
(THI) elements were most frequent, lysine (LYS) ele-
ments and cobalamine (B12) elements were signifi-
cantly more infrequent, and the riboflavine (RFN) ele-
ments and methionine S-boxes were very rare
(M. Kazanov, personal communication). However, it
is not always possible to predict the cofactor from
only the functions of the regulated genes, and several
classes of putative riboswitches remain experimen-
tally uncharacterized [5, 24].

The combination and functional specificity of
riboswitches differ among taxonomic groups [36].
The repressor structures causing premature transcrip-
tion termination predominate in bacteria from the

 

Bacillus

 

/

 

Clostridium

 

 group, which demonstrate the
largest variety of riboswitches. Repressors with
sequester hairpins, which inhibit translation initiation,
are found more often in proteobacteria; repressor
structures directly overlapping the translation start
site are most common in actinobacteria.

Experiments following a computational analysis
revealed other mechanisms of regulation. Activators,
the structures alternative to regulatory (terminator)
hairpins, were found in two classes of riboswitches,
lysine [31], and purine [37]. The thiamine
riboswitches predicted for eukaryotic genomes regu-
late splicing [38], and a riboswitch regulating the glu-
cosamine 6-phosphate metabolism operon functions
as a ribozyme and cleaves its own mRNA [28].

The high selectivity of riboswitches toward their
cofactors was demonstrated in experiments [4, 8, 15,
19, 21, 27, 28]. The selectivity was explained after the
spatial structure of the purine-responsive riboswitches
was established by X-ray analysis [39, 40] and NMR

 

Table 3.

 

  Ribosomal proteins acting as autoregulators

Protein
Position of the 
regulator gene 
in the operon

Operon
Gene whose upstream 

region harbors the 
regulatory element

Position of 
this gene in 
the operon

Genome Reference

S8 5

 

spc rplE

 

 (

 

L5

 

) 3

 

E

 

. 

 

coli

 

[46, 47]

L1 2 L11 (

 

rplKA

 

)

 

rplK

 

1 Enterobacteria [48–50]

L1 2 L11 (

 

rplKA

 

)

 

rplK

 

1

 

Thermotoga

 

 

 

maritima

 

[51, 52]

L1 1

 

MvaL1

 

(L1-L10-L12)

 

L1

 

1 Archaebacteria 

 

Methanococcus 
vannielii

 

, 

 

Halobacterium cutiru-
brum

 

[53, 54]

L10 1

 

beta rplJ

 

 (

 

L10

 

) 1 Enterobacteria [55, 56]

L10 1

 

rplJL rplJ

 

 (

 

L10

 

) 1

 

Thermotoga

 

 

 

maritima

 

[51, 52]

L20 3 IF3-L35-L20

 

L35

 

2

 

E

 

. 

 

coli

 

[57, 58]

S15 1

 

rpsO

 

 (S15)

 

rpsO

 

1

 

E

 

. 

 

coli

 

[59, 60]

L4 1 S10

 

S10

 

1

 

E

 

. 

 

coli

 

[62]
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[41]. As expected [36], numerous conserved nucle-
otides that are not included in the secondary structure
are involved in tertiary interactions and the formation
of the recognizing site. Guanine/hypoxanthine and
adenine are specifically recognized by the corre-
sponding riboswitches, owing to Watson–Crick pair-
ing with cytidine and uracil, respectively [37, 39, 40],
as predicted earlier [15]. The spatial structures solved
for two purine riboswitches were nearly identical,
although their primary structures differed in about
40% of the nucleotides [42].

A special variant of riboswitches is thermosensors,
which sequester the ribosome-binding region. The
thermosensor that induces the virulence genes of 

 

List-
eria monocytogenes

 

 after infection of a host, and the
resulting increase in temperature to 37

 

°

 

C was studied
experimentally [43]. An analogous sensor has been
proposed to regulate the heat shock 

 

σ

 

 factor gene in

 

Escherichia coli

 

 [44].

RNA-BINDING PROTEINS

Regulatory mechanisms based on RNA–protein
interactions can be divided in two groups. In one case
an RNA-binding protein autoregulates its own gene by
binding to a structure resembling its main substrate. In
another a special regulatory protein controls the
expression of other genes.

The best-known example of mimicking structures
is provided by the structures that imitate rRNA in the
regulatory regions of ribosomal protein genes. The
mRNA region with the translation start site and the
Shine–Dalgarno box folds into a structure similar to
the binding site for a given protein on rRNA [45].
Such structures were found in the S8, S15, L1, L4,
L10, and L20 mRNAs. In the case of L1 the structures
were revealed in various bacteria and even in archae-
bacteria (Table 3). The sequence similarity of such
structures is sometimes poor and is restricted to a
small site, whereas the secondary [62] and, especially,
spatial structures of the protein-binding sites are vir-
tually identical on mRNA and rRNA. For instance, the
regulatory element of the S10 operon and the L4-bind-
ing site of the 23S rRNA [63] lack similarity at the
levels of the primary and secondary structures and
nearly fully coincide in their spatial determinants [61].
However, in the case of S4 [64] and S14 [65], the deter-
minants of regulatory and functional binding of riboso-
mal proteins with mRNA and rRNA, respectively, are
completely different. It is worth noting that regulation
can take place not only at the translational level. Thus,
the binding of L4 with the leader region of the S10
operon results in premature transcription termination
[61].

Apart from the ribosomal proteins, an analogous
autoregulatory mechanism was observed for 

 

E. coli
thr

 

S of tryptophanyl-tRNA synthase. The leader

region has a tRNA-like structure, by binding with
which ThrS represses translation initiation [66].

The other class of regulators includes special
RNA-binding proteins. In particular, this class
includes the BglG/SacY family of transcriptional anti-
terminators. The membrane-bound protein of the PTS
system phosphorylates the antiterminator protein,
enabling it to bind with an antiterminatory hairpin and
activate transcription of the target operon [67, 68].
The regulator contains two homologous domains, one
of which is phosphorylated in the presence of glucose,
and the other is posphorylated in the presence of dif-
ferent sugar. The regulator binds with RNA and acti-
vates expression only when the second domain is
phosphorylated, while the first is not. This mechanism
regulates the expression of numerous operons
involved in catabolism of saccharides and polysaccha-
rides in Gram-positive and Gram-negative bacteria.
For instance, 

 

Bacillus subtilis

 

 LevR regulates the leva-
nase operon [69]; LicT regulates the 

 

bgl

 

PH operon,
involved in utilization of aryl-

 

β

 

-glucosides, and the

 

bgl

 

S gene for 

 

β

 

-glucanase [70]; GlcT regulates the

 

pts

 

GHI operon of the phosphotransferase system [71];

 

Streptococcus mutans

 

 LicT regulates the aesculin
locus [72]; 

 

Lactococcus plantarum

 

 BglG regulates the

 

bgl

 

GPT operon [73]; and 

 

E. coli

 

 BglG regulates catab-
olism of aromatic 

 

β

 

-glucosides [74].

The binding of PyrR with an anti-antiterminator
hairpin facilitates the formation of a terminator with
the subsequent repression of the 

 

pyr

 

 operon in 

 

B. sub-
tillis

 

 [75, 76]. The spatial structure of the complex of
PyrR with RNA and the ligands suggests dual regula-
tion by pyrimidines and purines [77].

TRAP is one of the most unusual RNA-binding
regulatory proteins. TRAP consists of 11 identical
subunits binding to (G/U)AG repeats in the 5' leader
region of mRNA [78], and forms a spool on which
mRNA is twisted [79]. Multimerization is regulated
by the accessibility of tryptophan and by another pro-
tein, AT (anti-TRAP) [80]. The group of TRAP-bind-
ing repeats forms a sensory structure, and regulation
involves either sequestration of the translation initia-
tion site (i.e., the sensory structure coincides with the
regulatory one), as in 

 

pab

 

A/

 

trp

 

G, 

 

trp

 

P/yhaG, and
ycbK [81, 82], or competition with the antisequester
hairpin, as in the trpEDCFBA operon [81, 83]. This
operon is also regulated at the transcriptional level; this
mechanism is conserved in related Bacillus halodu-
rans, whereas transnational regulation is not [82, 83].

T-BOXES: RNA–RNA INTERACTIONS

A high concentration of nonaminoacylated tRNAs
is one of the indicators of a lack of amino acids in the
medium. There are regulatory structures called T-
boxes that directly interact with uncharged tRNAs.
Initially T-boxes were revealed in the genes encoding
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aminoacyl-tRNA synthases, whose low activity
results in the appearance of nonaminoacylated tRNAs
[84]. It was shown more recently that T-boxes regulate
the genes encoding amino acid synthesis enzymes and
amino acid transporters [85–87]. The tRNA for a cer-
tain amino acid is recognized specifically by an anti-
anticodon, which is an unpaired sequence that is fixed
in the conserved secondary structure and is comple-
mentary to the tRNA anticodon. The nonaminoacy-
lated state of tRNA is recognized owing to a con-
served sequence complementary to unpaired CCA in
the tRNA acceptor loop: pairing with the T-box is pos-
sible only with nonaminoacylated tRNA.

As the T-box is an antiregulatory structure, the
binding with tRNA stabilizes it and facilitates the
progress of transcription (in bacteria of the Bacil-
lus/Clostridium group) or translation initiation (in act-
inobacteria) [88].

Bacteria have other small RNAs that presumably
regulate gene expression via trans-RNA–RNA inter-
actions. However, the mechanism of such regulation is
as of yet unclear; this binding is thought to act on
mRNA translation and stability [89, 90].

ATTENUATORS AND LEADER PEPTIDES

In attenuators alternative structures appear dynam-
ically, and the ratio between the rates of transcription
and cotranscriptional translation has an important role
[91, 92]. The attenuators of the amino acid operons
consist of the gene for a leader peptide, which con-
tains one (for rare amino acids) or several codons for
a certain amino acid (this sequence is a sensor), and
several hairpins, including the essential terminator
and antiterminator ones. The region of the antitermi-
nator hairpin overlaps the gene encoding the leader
peptide. The hairpins are alternative: either the former
or the latter is formed in mRNA.

The rate of translation yielding the leader peptide
depends on the concentration of the given amino acid.
When the concentration of the amino acid, or, more
exactly, aminoacylated tRNA, is sufficient, the rate of
translation is high and the translating ribosome pre-
vents the formation of the antiterminator hairpin. This
allows the formation of the terminator hairpin, and
structural genes of the operon are not transcribed.

Attenuators were revealed initially in E. coli and
other enterobacteria [93–98] and then in other bacteria
both experimentally [99, 100] and by comparative
genomic analysis [101–103].

There are other variants of regulation based on
coupling the rates of operon transcription and transla-
tion yielding the leader peptide. Instead of a ribosome,
RNA polymerase may be paused. This mechanism is
used in the case of attenuators of the E. coli pyrimi-
dine biosynthesis operons pyrE [104] and pyrBI [105,

106]. The regulation of other genes can thereby
involve the choice of a transcription start, which leads
to the formation of alternative structures in the pyrC
leader region [107] and re-iterative transcription initi-
ation on the pyrBI [108], codBA [109], upp [110], and
carAB [111] operons. This results in unproductive
transcription yielding short oligonucleotides
NUU…UU instead of the full-length transcripts.

In addition to translational attenuation of the leader
peptides of the amino acid operons on hungry codons
(codons whose cognate aminoacylated tRNAs occur
at a low concentration) and transcriptional attenuation
on thymines of the leader peptide-coding sequences of
the pyrimidine operons, there are other mechanisms
coupling the rates of translation and transcription.
Stalling or pausing the “venenate” ribosome during
translation of the leader peptide sequence results in
the formation of an antiterminator in the ermK eryth-
romycin resistance gene [112, 113] and the tet(M) tet-
racycline resistance gene of Enterococcus faecalis
Tn916 [114], and releases the Shine–Dalgarno region
in ermC [115] and the ermD [116], determining resis-
tance to macrolide antibiotics, and cat for chloram-
phenicol resistance [117], and the tetracycline resis-
tance gene of Bacteroides fragilis CTnDOT [118].
Finally, the ribosome translating rtpLP for the leader
peptide of B. subtilis rtpA, which encodes anti-TRAP,
covers the Shine–Dalgarno region, whereas a stalling
of the ribosome on tryptophan codons of the leader
peptide promotes translation initiation and anti-TRAP
synthesis [119].

EVOLUTION AND INTERACTIONS
BETWEEN REGULATORY SYSTEMS

In contrast to the binding sites for transcriptional
factors, the RNA regulatory systems with their con-
served primary and secondary structures allow effi-
cient computational analysis. A range of novel classes
of riboswitches has been discovered as a result of
mass analysis of genome sequences [24–28]. There
are many more examples of successful analysis of cer-
tain systems in the whole set of bacterial genome and
in separate taxa [1, 2, 7, 12, 15, 20, 30–34, 56, 85, 87,
88, 101, 102, 120–122], including analysis of metage-
nomes.

Many regulatory RNA structures, mainly identified
by computational analysis, are available from the
RFAM database [123]. It should be noted that the
leader regions of operons regulated at the level of pre-
mature transcription termination are often revealed in
a search for relatively short regulatory mRNAs [124].
This makes it possible to apply the analysis of regula-
tory RNAs for annotating genes (e.g., see [36]) and,
which is more pertinent to this review, to describe the
interactions between different regulators, the events of
complicated regulation, and the evolution of regula-
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tory systems. It is known that regulatory structures
form tandems. This is characteristic of thymine
riboswitches of δ-proteobacteria [120], several T-
boxes [125], and the all glycine riboswitches [27]. A
case was described that the S-box regulates the anti-
sense transcript of the ubiGyrhAB operon involved in
synthesis of cysteine from methionine in Clostridium
acetobutylicum [32]. As a result, the expression of the
operon is depressed in methionine deficiency. More-
over, this operon is regulated by the cysteine T-box,
which represses transcription in the conditions of a
cysteine excess. Preliminary experimental evidence
for this prediction has been obtained (I. Martin-Vers-
taete, personal communication).

The relatively large sizes of riboswitches and other
regulatory structures allow a study of their evolution,
since the information they contain is sufficient for
constructing phylogenetic trees. Thus, riboflavin-sen-
sitive riboswithces of ypaA transporters have been
assumed to result from independent duplications in
different genomes [2]. Horizontal transfer of regula-
tory elements has also been described [2]. Several
local duplications have been observed in T-boxes
(A.G. Vitreschak, personal communication), which
might be one of the mechanisms extending the corre-
sponding regulons.

Comparative genome analysis makes it possible to
describe cases where a regulatory system is fully
changed. Since RNA regulation is especially impor-
tant in Gram-positive bacteria, most observations
were obtained in this group.

Thus, the ancient system regulating methionine
metabolism by S box-like riboswitches was lost in a
common ancestor of lactobacilli and streptococci. The
S-box regulon was absorbed by the expanded
methionine T-box system in lactobacilli and by the
system of the transcriptional regulator MtaR in strep-
tococci [32]. On the other hand, the tryptophan T
boxes that regulated the main operon tryptophan syn-
thesis in the Bacillus/Clostridium group were substi-
tuted with a TRAP-binding system in Bacillus subtil-
lis and its close relatives [125]. Transcription factors
substituted the tyrosine T-boxes and came to play a
significant role in regulating the genes of the meta-
bolic system of aromatic amino acid synthesis in
streptococci and lactococci, which resembles the reg-
ulation using the methionine pathway [87].
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