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The enormous complexity of biological networks has led to the
suggestion that networks are built of modules that perform
particular functions and are ‘‘reused’’ in evolution in a manner
similar to reusable domains in protein structures or modules of
electronic circuits. Analysis of known biological networks has
revealed several modules, many of which have transparent bio-
logical functions. However, it remains to be shown that identified
structural modules constitute evolutionary building blocks, inde-
pendent and easily interchangeable units. An alternative possibil-
ity is that evolutionary modules do not match structural modules.
To investigate the structure of evolutionary modules and their
relationship to functional ones, we integrated a metabolic network
with evolutionary associations between genes inferred from com-
parative genomics. The resulting metabolic–genomic network
places metabolic pathways into evolutionary and genomic context,
thereby revealing previously unknown components and modules.
We analyzed the integrated metabolic–genomic network on three
levels: macro-, meso-, and microscale. The macroscale level dem-
onstrates strong associations between neighboring enzymes and
between enzymes that are distant on the network but belong to
the same linear pathway. At the mesoscale level, we identified
evolutionary metabolic modules and compared them with tradi-
tional metabolic pathways. Although, in some cases, there is
almost exact correspondence, some pathways are split into inde-
pendent modules. On the microscale level, we observed high
association of enzyme subunits and weak association of isoen-
zymes independently catalyzing the same reaction. This study
shows that evolutionary modules, rather than pathways, may be
thought of as regulatory and functional units in bacterial genomes.

clustering � evolution � modules

Recent studies of biological networks have revealed structural
modules and ubiquitous motifs, many of which have trans-

parent biological functions. However, it remains to be shown that
identified structural modules constitute evolutionary building
blocks, independent and easily interchangeable units. An alter-
native possibility is that evolutionary modules do not match
structural modules. Comparative genomics and analysis of bio-
logical networks provide tools to address this question. Here, we
study one of the most accurately assembled networks, the
metabolic network of Escherichia coli. To reveal evolutionary
modules, we integrate metabolic network with evolutionary
associations between genes inferred by comparative genomics of
multiple bacterial species. Two genes are associated if (i) they
have conserved proximity in distantly related genomes; and�or
(ii) demonstrate co-occurrence (i.e., both present or both ab-
sent) in most genomes; and�or (iii) have been found fused
together. The frequency of these events provides a measure of
evolutionary association between the genes. We combine this
measure with the structure of the metabolic network to identify
evolutionary modules as regions of the network that are highly
linked by metabolic reactions and highly associated in related
organisms.

Several studies have explored the link between metabolic
pathways and conservation of genomic context. Ogata et al. (1),
von Mering et al. (2), and Glazko and Mushegian (3) have
demonstrated that clusters of chromosomal proximity, co-
occurrence, or genomic association are enriched in functionally
related enzymes. Several studies reported chromosomal prox-
imity (4–7), grouping into operons and coexpression (8–11) of
enzymes of the same metabolic pathway. Kharchenko et al. (8,
11) and Green and Karp (12) used this observation to identify
missing enzymes. Li et al. (13) used functional associations to
identify parallel modules (sets of proteins in an organism that
catalyze the same or similar biochemical reactions but act on
different substrates or use different cofactors). Zheng et al. (14)
used proximity on the genome and on the metabolic reaction
network to predict operons and map them onto metabolic
pathways. The same group (15) used phylogenetic profiles and
proximity to detect conserved gene clusters and predict protein
function. Snel and Huynen (16) examined evolution of protein
complexes and metabolic pathways, suggesting, consistent with
our results, that traditional pathways lack modularity from the
evolutionary point of view. See recent reviews (17–19) for more
references.

Although several studies have explored the evolution and
organization of the metabolic network, most of them have
predominantly studied either the large-scale structure (20) of the
network, e.g., degree and flux distribution (21–24) or mean
clustering coefficient (21) or small motifs of 2–5 genes (8, 9, 11).
Our focus, in contrast, is on the multiscale nature of the
relationships between the metabolic network and genomic as-
sociations and, particularly, on the modules of 5–30 enzymes,
similar to our study of the network of protein–protein interac-
tions (25).

Here, we systematically analyze the metabolic network on
three scales. Macroscale analysis explores the patterns of evo-
lutionary association between metabolic enzymes, studied by
introducing a graph–theoretical measure of cross-correlation
coefficient. Mesoscale analysis focuses on identification of evo-
lutionary modules and their relationships to traditional biochem-
ical pathways. Microscale analysis studies patterns of associa-
tions of isoenzymes and subunits of enzymes. Consistent with
previous studies (16), we find that traditional metabolic path-
ways do not match discovered functional modules. Uniquely, we
identify such modules and show that they can be parts of
pathways or span across pathways.

Results and Discussion
We start by mapping the metabolic network and genomic
associations (2, 26) on a graph with vertices representing reac-
tions and two types of edges: metabolic ones that connect
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reactions sharing a metabolite and edges representing genomic
associations (see above) weighted according to the association
score S. The two reactions are connected by a genomic edge with
weight S if at least one pair of enzymes catalyzing these reactions
(or their subunits) is associated with score S. For comparison, we
generate control networks by randomly shuff ling gene-to-
reaction assignments. Such control preserves topologies of both
metabolic and association networks individually and randomly
assigns one to the other (see Methods).

Cross-Clustering Coefficient. An important question about the
macroscale level is whether genomic association brings some
clustering to the metabolic network. For a network with one
type of edges, the degree of clustering can be estimated by the
local clustering coefficient (27) as the probability of a link
among neighbors of node i : ci � Pr{�jk � 1��ij � �ik � 1},
where �ij is the adjacency matrix of the network. Here, we
generalize the clustering coefficient for networks with two
types of edges (e.g., edges of type M and G: �ij

M and �ij
G) by

introducing cross-clustering coefficient (see Fig. 1A). Consider
all M neighbors of node i, i.e., nodes connected to i by edges
of type M. We define a cross-clustering coefficient of node i
as the probability of a G-edge between M-neighbors of i.

ci
G�M � Pr�� jk

G � 1 �� ij
M � � ik

M � 1� . [1]

In the case of the genomic–metabolic network, the cross-
clustering coefficient ci

G�M is calculated as frequency of genomic
association �jk

G between nodes j and k, which are metabolic
neighbors of node i (see Fig. 1 A). By averaging over all nodes i,
we obtain an average cross-clustering coefficient of the inte-
grated network.

The average cross-clustering coefficient of the integrated
network is 16 times higher than in the control network, dem-
onstrating that neighboring reactions are 16 times more likely to
be genomically associated than expected at random (P � 0.001),
suggesting a great deal of ‘‘cliquishness’’ introduced by genomic
associations into a mostly branched metabolic network.

Proximal Reactions Are Genomically Associated. Does abundance of
genomic associations decrease with the distance between reac-
tions in the metabolic network?

We find that reactions closer than three intermediate reac-
tions on the metabolic network are much more likely to be
catalyzed by genomically associated enzymes than are random
controls (Fig. 1B). The tendency to be associated (and hence
coregulated and�or coinherited) decays as the number of inter-
mediate reactions increases, with no significant abundance of
associated reactions over what would be randomly expected
when separated by three or more intermediate reactions (see Fig.
1B Inset). Hence, on average, genomic associations are short-
range. Our results are consistent with earlier studies (6, 15) that
demonstrated that enzymes close on a metabolic network tend
to be close in the genome, and vice versa.

Linear Pathways Demonstrate Long Reach of Association. The met-
abolic network contains several linear or weakly branched
pathways that contain metabolites with small degree. High-
degree metabolites can be considered as ‘‘major intersections’’
of several pathways. Fig. 1C shows that linear pathways contain
many more associations than expected. Strikingly, such excessive
associations span metabolic distances of up to D � 7. Such
long-range associations in linear pathways contrast with fairly

Fig. 1. The excess of genomic associations at various metabolic distances. (A) The cross-clustering coefficient as defined in the text with metabolic (blue) and
genomic (orange) links. (B Left) The number of observed (red) and expected (green) associations M between reactions vs. metabolic distance D between reactions.
(B Right) The ratio of observed and expected number of associations (M�Mrnd) between reactions at distance D. Notice several-fold excess of observed over
expected associations at distance D � 3. (Inset) Probability of observing M � Mrnd in random controls. (C) Same as above but for reactions in linear paths (Inset,
log-scale). A pathway is said to be linear if it contains no major ‘‘intersections,’’ i.e., all of its metabolites participate in four or fewer reactions. Notice significant
excess of associations between reactions as far as D � 7 metabolic steps apart on linear pathways. Compare B (all pathways) and C (linear pathways) to see that
linear pathways demonstrate long-range associations.
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short ranges (up to D � 3) if all pairs of reactions are considered
indiscriminate of the branching degree of their metabolites.

In summary, our macroscale analysis of the integrated genomic–
metabolic network suggests several design principles: (i) genomic
associations tend to link nearby reactions (D � 1–3) and (ii)
reactions along linear pathways tend to be linked even if they are
far apart on the metabolic networks (up to seven intermediates).

Despite significant local clustering, the vast majority (�70%)
of functional associations are among reactions separated by
three or more intermediate metabolites (Fig. 1B), suggesting
that associations bring together distant reactions of a metabolic
pathway or pathways to each other. Such long-range associations
give rise to large modules of metabolically and genomically
associated reactions.

The Network Contains Several Evolutionary and Regulatory Metabolic
Modules. On the mesoscale level, we identify evolutionary�
regulatory modules of highly associated and metabolically prox-
imal enzymes.

The modules are identified as clusters of enzymes that operate
on common substrates (i.e., reactions that are a small metabolic
distance apart) and have strong genomic associations (i.e., likely
to be colocalized, coinherited, or fused). We developed algo-
rithms and statistical techniques to find subgraphs that contain
significantly more edges of both types than expected in random-
ized controls (see Methods). Each of these modules, possibly
consisting of parts of different linear biochemical pathways,
tends to be regulated and inherited together and, thus, can be

treated as the basic building blocks of the cell’s metabolic
network.

We discovered �20 nonredundant modules. Fig. 2 presents
examples of these modules mapped on metabolic pathways.
Whereas some pathways contain several dense modules (e.g.,
biosynthesis of amino acids, purines and pyrimidines, cell-wall
components, and certain cofactors), others contain only a few
(e.g., central metabolism, salvage, and catabolism). We observe
that (i) a module can map on the whole pathway, (ii) a pathway
can break into nonoverlapping modules, and (iii) a hybrid
module can bring together pieces of two or more pathways. Such
diversity indicates a different mechanism of regulation and the
extent of structural and evolutionary constraints that a pathway
exhibits.

Modules Do Not Necessarily Coincide with Metabolic Pathways. For
example, modules contained within amino acid biosynthetic
pathways rarely coincide with traditional pathways (see Fig. 2).
Fig. 2 A presents modular structures of arginine and histidine
pathways. One module contains the arginine biosynthesis part,
another the histidine pathway, and the third hybrid module links
the two pathways together by the genomic associations. The third
module links the initial part of the arginine pathway (glutamate
to ornithine) with the histidine pathway, leaving the rest of the
arginine pathway to a separately regulated module. The main
metabolite keeping together these pathways is glutamate (source
compound for argA, argD, and hisC and product for ygjGH and
hisFH), a likely reason for coclustering of the glutamate-pathway
gene gltBD with the arginine-biosynthesis genes (see Supporting

Fig. 2. Examples of inter- and intrapathway modules of genomically associated reactions. (A) Arginine and histidine pathways. Red, arginine biosynthesis
module; blue, histidine biosynthesis module; dotted line, arginine plus histidine biosynthesis module; black (spe genes), spermidine�putrescine biosynthesis, not
in any cluster. (B) Purine (Lower) and pyrimidine (Upper) pathways. Blue, hybrid purine–pyrimidine module; green, GMP module; black, nonassociated
isoenzyme. (C) Fucose and rhamnose pathways and clusters. Fucose pathway, solid lines; rhamnose pathway, dotted lines; colored (red and blue), two clusters.
(D) Aromatic amino acids and folate pathways. Folate pathway: dotted (Left); aromatic amino acids, solid (Left); enterochelin, dotted (Right); menaquinone, solid
(Right). Interpathway clusters: aromatic�folate, red; enterochelin�menaquinone, blue. (E) Cystein and methionine biosynthesis. (Left and Center) Cysteine.
(Right) Methionine. Horizontal, one-carbon metabolism (partial). Clusters are colored in red, blue, and green.
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Appendix, which is published as supporting information on the
PNAS web site, for more examples).

Similarly, the cysteine pathway breaks into two modules
(cysDN, cysC, cysH, and cysIJ) and (cysE, cysK, cysM, metA, and
metB), the latter containing two genes of the methionine path-
way. This way, the cysteine and methionine pathways are redis-
tributed between the modules that look reasonable from the
biochemical point of view (Fig. 2B). Another unexpected mode
of genomic association is observed in the pathways of purine and
pyrimidine biosynthesis. These pathways are linked together by
a single module (Fig. 2C). Such fusion of purine and pyrimidine
pathways can be due to coregulation of their genes by PurR
transcription factor. Purine biosynthesis is also split at the IMP
junction, revealing the IMP-to-GMP production line as a single
module (guaA, guaB, and guaC). This separation is surprising,
because guaA and guaB are also regulated by PurR. However,
weak genomic associations with other genes in the pathway bring
guaA–guaB–guaC into a separate module.

Most of the pathways have not been detected as modules. To
make sure that this result is not because of deficiency of our
algorithm to detect pathways as modules, we computed the
statistical significance of all pathways. We found that 75% of
traditional pathways of three or more reactions do not form
statistically significant modules (as judged by Eevd � 1; see
Methods). The remaining 25% (13 pathways) have been identi-
fied as parts or whole modules (e.g., histidine and murein
biosynthesis, see Supporting Appendix for details). In summary,
the observed discrepancy between modules and pathways in not
because of limitations of the algorithm but rather reflect the
complex modular structure and evolution of the metabolic
network.

Diversity of Central Metabolism. Few modules are present in the
large pathways of the central metabolism [glycolysis, pentose-
phosphate pathway, the Krebs (TCA) cycle, and respiration].
Although strict thresholds yield only small clusters of associated
reactions (e.g., a module of the nonoxidative branch of the
pentose phosphate pathway), large superpathway modules con-
taining representatives from several pathways are obtained at
low thresholds. For example, part of the EMP pathway, degra-
dation of several carbon sources and the nonoxidative branch of
the pentose phosphate pathway form a single superpathway
module (Fig. 2D). The lack of modules mapping to traditional
pathways in the central metabolism suggests high diversity in its
structure and evolution in different bacteria as well as the
complexity of its regulation [e.g., a cascade of 11 transcription
factors regulating three genes, aslL, zwf, and gnd, in the pentose
phosphate pathway (28)]. This finding agrees with observations
of Glazko and Mushegian (3) and earlier analyses of Dandekar
et al. (40) and Huynen et al. (29) who demonstrated the high
diversity of the Krebs cycle and the glycolysis pathway.

A Module May Include Several Pathways. Examples of superpathway
modules (obtained mostly by Monte Carlo search) include cell
wall and membrane biosynthesis, biosynthesis of certain amino
acid whose genes demonstrate strong linkage, central metabo-
lism (see above), enterochilin, and tetrapyrrole pathways, thus
corresponding to large functional systems.

Although observed differences between pathways and mod-
ules could not be systematically explained by gene regulation,
pathways coregulated in E. coli tend to cluster into modules more
than do pathways without a common regulator. We observe this
tendency in biosynthetic pathways (e.g., modular arginine,
branched chain and aromatic amino acids, histidine, threonine
and lysine, and methionine pathways vs. nonmodular glutamine�
glutamate, asparagine�aspartate, serine and glycine, and proline
pathways) and vitamin biosynthetic pathways [modular biotin
pathway regulated by BirA vs. other vitamin pathways, such as

riboflavin and thiamin (30–34)]. In the same vein, we notice that
purB, the gene breaking the purine biosynthesis pathway, is
regulated in a unique way, by a transcription roadblock mech-
anism with the binding site for the PurR repressor deep within
the coding region (35).

In summary, discovered modules demonstrate that regulation
and evolutionary mechanisms operate on metabolic pathways by
rules that are far more complicated than ‘‘one pathway–one
regulator.’’ In other words, the ‘‘cell’s definition’’ of a pathway
as a regulatory and evolutionary unit can be dramatically
different from those commonly accepted in metabolic biochem-
istry. See Supporting Appendix for systematic comparison of
pathways and modules.

Isoenzymes and Enzymatic Subunits Demonstrate Distinct Patterns of
Regulation and Evolution. On a microscale, we analyze patterns of
association between isoenzymes and subunits. A reaction can be
catalyzed by one enzyme that consists of several polypeptide
chains (subunits) or by several enzymes, each capable of cata-
lyzing this reaction (isoenzymes).

Fig. 3 shows distribution of association scores between sub-
units, isoenzymes, and, for control, enzymes catalyzing different
reactions. Subunits are highly associated, with 72% of them
having association score of S � 300. For comparison, only 1.5%
of enzymes catalyzing different reactions have S � 300. The
biological importance of strong association between subunits is
apparent. If all subunits are required for normal operation of an
enzyme, then the subunits (i) have to be coregulated�
coexpressed, and (ii) loss of one subunit is likely to affect the
enzyme’s function and reduce the fitness of the organism.
Requirements (i) and (ii) lead to strong genomic association;
chromosomal proximity and gene fusion provide coexpression
and genetic linkage. Coinheritance shows that the requirements are
satisfied in several genomes. This result supports the ‘‘balance
hypothesis,’’ which suggests that imbalance in the concentration of
proteins that constitute a single complex is deleterious (36). Weak
association between some subunits indicates structural flexibility of
a multisubunit enzyme (see Supporting Appendix).

Isoenzymes show a pattern of association different from that
of subunits. Only 52% of isoenzymes are associated with a score
S � 300, whereas the remaining 48% are weakly associated.

Fig. 3. Distribution of association scores in isoenzymes (green), subunits
(brown), and, for control, all enzymes (blue). Notice that isoenzymes exhibit
bimodal distribution, with most isoenzymes being either strongly associated
(S � 800) or not associated (S � 200). In contrast, subunits have one peak at S �
800, tending to be much more associated than any other enzymes.
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Isoenzymes demonstrate bimodal distribution, with most of
them having S � 800 or S � 100 (Fig. 3). This pattern of
association reflects two modes of isoenzyme operation. Associ-
ated isoenzymes provide increased flux through the catalyzed
reaction and have somewhat different specificities (see example
in Supporting Appendix). Weakly associated isoenzymes can be
differently regulated in response to different stimuli or condi-
tions (9) and�or participate in different pathways (e.g., speA and
adiA). Such isoenzymes have no tendency to be close on the
genome, coinherited, or fused.

Summarizing results obtained at different scales for the inte-
grated metabolic-genomic network, we can suggest design prin-
ciples behind the complex organization, regulation, and evolu-
tion of the metabolic network. Our analysis suggests that (i)
modules of high genomic association and metabolic proximity do
not necessarily match traditional metabolic pathways, and, thus,
such modules, rather than the traditional pathways, can be
thought of as evolutionary and regulatory units. We also see that
genomic associations favor linear metabolic pathways, breaking
at branching points. This observation suggests that (ii) linear
pathways are regulated and inherited as a single ‘‘building block’’
of the metabolic network. Finally, we see that (iii) although
enzymatic subunits are strongly associated, suggesting a persis-
tent coregulation and coevolution, regulation and evolution of
isoenzymes depends on their role in providing alternative spec-
ificity or differential expression.

Individual Contributions of Chromosomal Proximity and Co-Occur-
rence. Several studies used these characteristics and their com-
binations to predict protein function (see refs. 17–19 for re-
views). A recent study has also demonstrated that coregulation
rather than horizontal gene transfer drives chromosomal prox-
imity (37).

It is important to understand the individual contributions of
gene fusion, proximity, and co-occurrence to functional met-
abolic modules and linear pathways. In fact, when considered
separately, these characteristics exhibit similar patterns on the
metabolic network (see Supporting Appendix) For example,
there are similar relationships between metabolic distance and
proximity and metabolic distance and co-occurrence. In ad-
dition, metabolic modules found by using only proximity or
only co-occurrence are very similar to those obtained by using
a combined score as described above (see http:��insilico.mit.
edu�METABOLIC, Full Set of Clusters). These results sug-
gest that proximity on the chromosome and co-occurrence are
ref lections of some general functional association (e.g., par-
ticipation in the same metabolic module), thus allowing us to
look at organization of the metabolic network from the cell’s
‘‘point of view.’’

Contribution of Operons and Divergent Gene Pairs. Do functional
associations contain more information about modularity of the
metabolic network than simply E. coli operons? To what extent
can operon structure explain observed modularity and long-
range associations in linear pathways?

To investigate the effect of operon organization, we excluded
all functional edges between genes that belong to the same
operon (38) and repeated our analysis on the modified network.

Macroscale results remain the same within a statistical error
(Supporting Appendix). This result comes as no surprise, because
the original graph contained �2,000 functional links, whereas
356 operons of two or more genes provide only as many as �200
links between metabolic enzymes.

Mesoscale analysis shows a more complicated picture of
relationships between modules and operons. We found 23
modules (of 182 nonidentical modules) that are built primarily
of genes coming from a single operon: histidine, murein, and
thiamin biosynthesis and smaller modules. Most (87%) of iden-

tified modules, however, contain genes from several operons. In
summary, although operon organization is known to be corre-
lated with metabolic pathways and proximity on the metabolic
network (3, 6, 15, 18), genomic associations between genes go far
beyond operons in revealing functional modules.

Recently, Korbel et al. (39) argued that adjacent bidirection-
ally transcribed genes with conserved gene orientation are
strongly coregulated. They reported 391 divergent gene pairs.
Because of a much smaller number of these pairs compared with
the total number of functional edges on the metabolic–genomic
graph, we expect the effect of these divergent genes to be limited
as well.

Biological Implications. This analysis has a number of implications.
First, we expect that the genes forming a module would be
strongly coregulated (even when they are not part of the same
operon). The analysis of expression data for bacteria, by using as
a control a random group of metabolically proximal enzymes,
can test such a hypothesis. It would be interesting to see whether
such coexpression of genes within a module exceeds coexpres-
sion of metabolic pathways.

Furthermore, because identified modules are detected using
evolutionary information obtained across several bacterial ge-
nomes, we would expect to have modules coregulated (and hence
coexpressed) in different close species. In other words, we expect
modules to show conservation of coexpression. This conserva-
tion, again, can be tested by using bacterial expression data.

As we pointed out above, modules do not necessarily corre-
spond to operons nor are they known to be regulated by the same
transcription factor. However, the hypothesis of coexpression
suggests searching for a common regulatory site, motif, or
combination of sites in promoters of a single module.

Methods
Construction of an Integrated Metabolic–Genomic Network. We first
map the network on a graph with vertices representing reac-
tions and two types of edges. Edges of the first type connect
reactions sharing a metabolite. Edges of the second type
connect reactions that are catalyzed by genomically associated
enzymes (2, 26). Such edges carry a weight that equals the
association score (0 � S � 1,000; see below). The weight of an
edge between reactions is taken as the maximal of the scores
between their enzymes (or subunits). Because genomic asso-
ciation indicates coregulation and�or evolutionary coinher-
itance, such representation allows one to identify metabolic
modules and reveals principles of regulation and evolution of
the metabolic networks.

Two reactions are connected by an edge of the first type if they
have at least one common metabolite as a substrate or product.
Common (nonspecific) metabolites, such as water, CO2, phos-
phate, etc. have been excluded (see Supporting Appendix for a
complete list). The same reactions catalyzed by isoenzymes are
considered as different reactions. Two reactions are connected
by an edge of the second type with weight S if at least one pair
of enzymes catalyzing these reactions (or their subunits) are
associated with score S. The weight of an edge between reactions
is taken as the maximal of the scores between their enzymes (or
subunits).

Macroscale. For every pair of reactions, we computed the shortest
distance along the metabolic edges (metabolic distance D). We
grouped association links into strong (S � 700), moderate (400 �
S � 700), and weak (100 � S � 400). For each category k � 1,
2, 3, we calculated the number of association links Mk(D)
between reactions at metabolic distance D in the metabolic
network and average Mk

rnd(D) in control networks.
We define a degree of each metabolite as the number of

reactions in which this metabolite participates. Two reactions are
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said to be connected by a linear path if all metabolites along the
shortest metabolic path between them have a degree of four or
less. We compute MLINEAR(D) as the number of strong and
moderate associations (S � 400) between enzymes connected by
a linear path and average the same quantity in random controls
MLINEAR

rnd (D).

Search Algorithms. We searched for clusters that contain large
numbers of metabolic and association links. We developed a
Monte Carlo algorithm that searches for a set of nodes to
maximize the number of edges of both types between them. The
score to be maximized is s � mm� a�ma, where mm is the number
of metabolic edges, ma is the number of association edges (edges
with S � Scutoff), and a is a relative weight of association edges.
The algorithm is similar to the one we developed to search for
protein complexes in the network of protein–protein interactions
(25). By varying the relative contribution of the metabolic vs.
genomic edges, we can steer our search toward modules that are
richer in a particular type of edge (see Supporting Appendix).

We also exactly enumerated clusters within which every pair
of nodes is connected with a path through both metabolic and
association edges. There are two types of such clusters. In the
first type, every edge is a product of metabolic and association
links, and the metabolic and association paths between each pair
of nodes are exactly the same. In the second type, although every
pair of nodes is connected through both metabolic and associ-
ation paths, these paths may be different. The cluster enumer-
ation is a search for connected components on the networks with

appropriately constructed edges (see Supporting Appendix for
details).

Statistical Significance. The statistical significance of each Monte
Carlo cluster is evaluated by using extreme value statistics with
parameters obtained by running the same search algorithm on
the random control networks (see Supporting Appendix). Control
networks have been obtained by randomly assigning gene names
to the enzymes on the metabolic network. Such random controls
preserve the structure of both metabolic and association net-
works, randomly assigning one to the other. Monte Carlo clusters
with an E value �0.1 (see Supporting Appendix for details) have
been retained for further analysis.

For clusters found by exact enumeration, we estimated the
statistical significance by using random control networks (see
above) 10,000 times and enumerating all clusters in each reshuf-
f led graph. A cluster from the original network was statistically
significant if we found, at most, 100 clusters with a higher density
of metabolic and association links in the 10,000 control networks,
corresponding to an E value of 0.01 (see Supporting Appendix for
details).

Web Access. Additional information is available from http:��
insilico.mit.edu/METABOLIC.
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