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ABSTRACT
Motivation: Millions of protein sequences currently being deposited
to sequence databanks will never be annotated manually. Similarity-
based annotation generated by automatic software pipelines unavoid-
ably contains spurious assignments due to the imperfection of
bioinformatics methods. Examples of such annotation errors include
over- and underpredictions caused by the use of fixed recognition
thresholds and incorrect annotations caused by transitivity based
information transfer to unrelated proteins or transfer of errors already
accumulated in databases. One of the most difficult and timely chal-
lenges in bioinformatics is the development of intelligent systems
aimed at improving the quality of automatically generated annota-
tion. A possible approach to this problem is to detect anomalies in
annotation items based on association rule mining.
Results: We present the first large-scale analysis of association rules
derived from two large protein annotation databases—Swiss-Prot and
PEDANT—and reveal novel, previously unknown tendencies of rule
strength distributions. Most of the rules are either very strong or
very weak, with rules in the medium strength range being relatively
infrequent. Based on dynamics of error correction in subsequent
Swiss-Prot releases and on our own manual analysis we demonstrate
that exceptions from strong rules are, indeed, significantly enriched
in annotation errors and can be used to automatically flag them. We
identify different strength dependencies of rules derived from different
fields in Swiss-Prot. A compositional breakdown of association rules
generated from PEDANT in terms of their constituent items indicates
that most of the errors that can be corrected are related to gene func-
tional roles. Swiss-Prot errors are usually caused by under-annotation
owing to its conservative approach, whereas automatically generated
PEDANT annotation suffers from over-annotation.
Availability: All data generated in this study are available for download
and browsing at http://pedant.gsf.de/ARIA/index.htm.
Contact: d.frishman@wzw.tum.de
Supplementary information: http://pedant.gsf.de/ARIA/index.htm

1 INTRODUCTION
Amino acid sequences are meaningless unless some kind of func-
tional annotation is attached to them. The Webster dictionary defines
annotation as ‘a note added by way of comment or explanation’. In
particular, annotation of proteins can be defined as the systematic
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collection of facts explaining their cellular role and mechanism of
action. Ideally, such annotation should include only experimentally
verified information, typically extracted from scientific literature.
This approach is being centrally pursued by the Swiss-Prot (now
UniProt; Bairoch et al., 2005) database which is considered to be the
gold standard of protein annotation owing to its high level of manual
curation and resulting good data quality. In addition, many individual
genome sequencing projects as well as several bioinformatics teams
also produced in-depth annotation of each gene product for numer-
ous completely sequenced genomes (e.g. Tatusov et al., 1996; Bult
et al., 1996; Mewes et al., 1997; Cole et al., 1998; Karp et al., 1999;
and many others). Literature curation plays a crucial role in creat-
ing reference annotation datasets, but at the same time it remains
a time-consuming and creative process which, of course, is also
not completely faultless. Numerous discrepancies between different
careful annotation efforts have been reported (Brenner, 1999).

Unfortunately, only a small fraction of known proteins has been
studied experimentally, and the explosion of sequence data makes it
impossible to annotate all proteins manually. Most of the informa-
tion about molecular sequences in today’s databanks is inferred by
similarity with previously analyzed entities. Although such annota-
tion transfer is technically efficient and often yields quite accurate
function assignments, it also has severe intrinsic limitations (Smith,
1996; Wilson et al., 2000; Devos and Valencia, 2000) and is in some
cases notoriously error-prone (Bork and Bairoch, 1996; Galperin
and Koonin, 1998), especially for multidomain eukaryotic proteins
(Hegyi and Gerstein, 2001). As a result, transitive annotation errors
propagate in sequence databases, leading to the gradual deterioration
of the total corpus of available annotation and complicating further
analysis efforts (Gilks et al., 2002).

The problem acquired a new dimension in the last decade with the
advent of whole-genome sequencing. In response to genomic data
deluge large-scale software systems, such as GeneQuiz (Andrade
et al., 1999), MAGPIE (Gaasterland and Sensen, 1996), WIT
(Overbeek et al., 2000), PEDANT (Frishman et al., 2001), CMR
(Peterson et al., 2001) and ENSEMBL (Hubbard et al., 2005), to
name just a few, have been developed to conduct initial first-pass
annotation of complete proteomes by systematically applying a large
set of bioinformatics methods to gene products and assigning func-
tional and structural attributes to them according to fixed recognition
thresholds. The UniProt database offers automatic annotation of all
available sequences through its TrEMBL supplement. As a result,
millions of currently available protein annotation entries in various
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databases have never been and will unlikely be verified by human
experts.

Thus, a difficult and timely challenge in bioinformatics is the
development of intelligent systems aimed at improving the qual-
ity of automatically generated annotation. In addition to constant
efforts to improve the effectiveness of individual bioinformatics
techniques, a possible approach to this problem is to check the con-
sistency of assigned features and then to mark potentially erroneous
features for manual inspection or to add those features that could
have been missed. In recent years a large number of consensus-
based approaches to improving gene function prediction have been
proposed which usually operate by detecting inconsistencies in the
annotation of related proteins forming a sequence cluster (Xie et al.,
2002; Kaplan et al., 2003; Kunin and Ouzounis, 2005).

Another promising approach to intelligent filtering and improve-
ment of biological annotation is through knowledge discovery
techniques aimed at detecting common patterns, rules or anomalies.
In addition to being widely used for mining biological literature (Hu
et al., 2005) and experimental data (Michailidis and Shedden, 2003),
rule-based approaches have been applied to predict protein annota-
tion features from a set of other annotation features (Eisenhaber and
Bork, 1999; Kretschmann et al., 2001; Yu, 2004). Major protein
annotation efforts routinely use rule-based procedures for checking
the integrity of information, finding minor errors and automating
trivial annotation procedures which do not require human interven-
tion (Fleischmann et al., 1999; Gattiker et al., 2003; Wu et al.,
2003). Uninformative pieces of information (e.g. description lines
containing only words such as ‘hypothetical’, ‘putative’, ‘unknown’
transferred from the best similarity hit) can be filtered out using
simple lexical analyses based on specially prepared vocabularies
(Andrade et al., 1999; Kasukawa et al., 2003).

A more sophisticated approach to this problem involves automatic
learning of rules from a highly curated and reliable database, such
as Swiss-Prot, and then using these rules either to further improve
annotation in the same database, or in another automatically gener-
ated database, such as TrEMBL. Kretschmann et al. (2001) applied
the C4.5 data mining algorithm to derive decision trees represent-
ing the knowledge on Swiss-Prot keywords. Rules obtained in this
fashion combined with information on sequence groups gleaned by
sequence analysis can be applied both for consistency checks within
Swiss-Prot and for generating keywords for new TrEMBL entries
with high accuracy. Conversely, exclusion rules for a specific pro-
tein group (e.g. sharing the same sequence motif) can be generated
by the C4.5 algorithm to detect contradicting annotation items, as
implemented in the Xanthippe post-processing system (Wieser et al.,
2004).

Our purpose is to improve the automatic annotation in the PED-
ANT Genome Database (Riley et al., 2005; http://pedant.gsf.de)
containing precomputed information resulting from bioinformat-
ics analyses of publicly available genomes. Its main mission is to
provide robust and up-to-date annotation of the vast majority of
amino acid sequences which have not been subjected to in-depth
manual curation by human experts in high-quality protein sequence
databases, such as Swiss-Prot. Computational results produced by
PEDANT are not verified manually and hence contain a large amount
of erroneous assignments, ranging from completely false simil-
arity hits accepted as true positives to more subtle cases where
coarse function prediction is correct but functional specificity is
mispredicted.

In this work we set out to find annotation errors by applying the
association rule mining technique (Zhang and Zhang, 2002) to large
protein annotation databases, such as PEDANT. This technique, ori-
ginating from the analysis of data on market baskets involves the
discovery of association relationships or correlations among a set of
items. Association rule mining has been previously applied in bioin-
formatics to identify pairs of related GO terms (Bodenreider et al.,
2005), interpret gene expression data (Creighton and Hanash, 2003;
Becquet et al., 2002) and investigate relationships between different
types of genomic data (Satou et al., 1997).

Association rules may have the form of simple implications. For
example, in a database of annotated proteins, one such rule is the
implication ‘Nuclear localization ⇒ Origin: eukaryota’, i.e. every
protein annotated as localized in nucleus has a eukaryotic origin.
The rules are not necessarily absolutely strict. For instance, the rule
‘Alternative splicing ⇒ Origin: eukaryota’ has exceptions, because
viral genes also may be spliced (and alternatively spliced as well).
However, this is still a valid rule, because the exceptions comprise a
small fraction of the database. Thus, this rule is naturally interpreted
as ‘the majority of proteins with evidence of alternative splicing
originate from eukaryotic organisms’. ‘Many-to-one’ rules can also
be considered. For instance, ‘Alternative splicing and Kinase ⇒
Origin: eukaryota’. In this example, alternatively spliced proteins
are specific to eukaryotic organisms or viruses and kinases belong
to either eukaryota or prokaryota. If a protein kinase is annotated as
resulting from alternative splicing, then it is a eukaryotic protein.

Formally, we consider a database with multiple entries and each
entry in the database is ascribed a finite number of features. In the par-
ticular implementation used here, an association rule is formulated
in the form (A1& · · · &An) ⇒ Z. Here A1, . . . , An (the Left-hand
side or LHS) and Z (the Right-hand side or RHS) are different fea-
tures, and the rule means ‘database entries that possess all features
A1, . . . , An are likely to possess feature Z’. Each rule is character-
ized by its coverage, the number of entries in the database that satisfy
the LHS (possess all features A1, . . . , An), its support, the number
of entries satisfying both the LHS and the RHS simultaneously, and
its strength, the fraction of entries that satisfy LHS and RHS among
the entries satisfying the LHS, i.e. strength is the probability that an
entry will satisfy the RHS given that it satisfies the LHS.

In the application of association rule mining technique to improv-
ing annotation, the main assumption is that if the database annota-
tions satisfy a rule ‘A and B imply C’ with a high support and a very
high strength, then such a rule reflects some biological regularity
or maybe a peculiarity of the annotation process. If the strength is
very close, but not equal, to 1, then the rule has a minor number
of exceptions. Although in some cases such exceptions may reflect
biological reality, it is plausible that a significant fraction of them are
actual errors in annotation. Hence our strategy is to find rules of high
strength, e.g. in the range [0.95; 1), filter them, identify proteins that
are exceptions from such rules, mark the features from the left-hand
side and add the right-hand side feature of the rule to the annotation
of such exception proteins.

To evaluate the validity of this approach we first analyze asso-
ciation rules derived from the high-quality Swiss-Prot database,
focusing on the most formalized non-overlapping fields of a stand-
ard Swiss-Prot entry, such as protein length, the highest-level taxon
of the protein origin, assignment of InterPro domains, keywords
and features from the feature table. We then apply the technique
to the full body of annotation produced by PEDANT and present
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both computationally and manually derived estimates of its usability.
We demonstrate that exceptions from strong rules in the PEDANT
database are indeed significantly enriched in errors which can be
automatically flagged. We call our approach ARIA: association rules
to improve annotation.

2 DATA AND METHODS

2.1 Extracting item sets from the Swiss-Prot database
We used release 44.0 of the Swiss-Prot database containing 153 871 pro-
tein sequence entries as the source of high quality manual annotation. In
addition, to assess the dynamics of annotation updates in Swiss-Prot we
also considered two preceding releases, 42.0 and 43.0, as well as three
subsequent releases, 45.0, 46.3 and 47.0. Each Swiss-Prot entry corres-
ponding to a single protein contains textual annotation presented in the form
of records beginning with a two-letter record identifier. For example, the
unique protein code identifier can be found in the ID record, description
lines containing protein function begin with DE, the date of the last update
is specified in the DT record and so on. According to the Swiss-Prot user
manual (http://us.expasy.org/sprot/userman.html), there currently exist 22
record types, out of which the following 15 were not considered suitable
for association rule mining in this study:

• records not containing protein annotation: date (DT), amino acid
sequence (SQ)

• records containing unique protein attributes, such as protein code (ID),
accession numbers (AC) and gene names (GN)

• records containing free-text annotation: literature reference (RN, RP,
RC, RX, RG, RA, RT, RL), description line (DE) and comments (CC),
since this part of Swiss-Prot annotation is not easily machine-parseable.

We also did not use the following two Swiss-Prot records—OS (Organism
species) and OX (Taxonomy cross-reference). These two record types
provide information that was considered redundant to the OC (Organism
classification) record.

The five Swiss-Prot record types used in this work are as described below:

(1) OC Organism classification. In this work we only considered the
top-level taxon which can take one of the four values, namely
Eukaryota, Bacteria, Archaea or Viruses.

(2) FT Feature table data. This record contains positional features of
protein sequences as described in biological literature, such as post-
translational modifications or binding sites. Each record of this type
consists of a record name (e.g. TRANSMEM), start and stop posi-
tions of the given feature and a brief description line. Release 44.0
of Swiss-Prot distinguishes between a total of 33 feature names
(see http://us.expasy.org/sprot/userman.html# FT_keys for a full list).
Many features do not reflect general properties of the entire protein
chain. For example, the feature ‘CONFLICT’ indicates that dif-
ferent sources reported differing sequences for a given Swiss-Prot
entry. Other local features, however, describe some characteristic
of the associated protein. For example, the feature VARSPLIC not
only points to the alternative part of the protein, but also serves as
an indication that the protein is subject to alternative splicing. We
selected for our work the following 16 features that have general dis-
criminatory biological sense: ACT_SITE, DNA_BIND, CA_BIND,
CARBOHYD, DISULFID, LIPID, METAL, MOD_RES, NP_BIND,
PROPER, REPEAT, SE_CYS, SIGNAL, TRANSMEM, VARSPLIC
and ZN_FING. These feature names were used by themselves as
protein characteristics. Furthermore, description lines of four fea-
tures, TRANSIT, CARBOHYD, LIPID and METAL, were used as
additional sequence attributes since they have a restricted number of
possible values. For example, the description line of the TRANSIT
feature is currently limited to mitochondrion, chloroplast, thylakoid,
cyanelle or microbody.

(3) KW keyword. There are 890 individual keywords in release 44
of Swiss-Prot. Entries contain on average 3.55 keywords with a
maximum of 21 keywords. Three frequent keywords (‘Direct pro-
tein sequencing’, ‘Complete proteome’ and ‘Pharmaceutical’) were
ignored as they have no biological meaning.

(4) DR Database cross-references. This record contains references to
other general purpose databanks, such as the EMBL Nucleotide Data-
base, the PDB, a repository of known three-dimensional structures
and several others. These references do not provide detailed func-
tional or structural annotation, but merely contain individual database
IDs of the external databases. In addition, the DR record indicates
the occurrence of protein sequence and structure motifs and domains
as defined in PFAM, PRINTS, PROSITE, SCOP, ProDom, SMART
and TIGRFAMs databases (reviewed by Liu and Rost, 2003), as well
as in the InterPro resource which integrates all major signature data-
bases (Mulder et al., 2005). Since the InterPro resource is essentially
a superset of a large number of domain databases, we chose to use
only InterPro domain assignments listed in the DR records to avoid
redundancy. The release 44.0 of Swiss-Prot contains references to the
total of 9101 distinct InterPro domains, or 2.06 per Swiss-Prot entry on
average. InterPro IDs begin with the three letters IPR followed by six
digits specifying the number of the corresponding InterPro signature
(e.g. IPR002394).

(5) OG Organelle. This record indicates if the gene coding for a protein
originates from the mitochondria, the chloroplast, the cyanelle, the
nucleomorph or a plasmid. In this study we considered only entries
mitochondrion, chloroplast, cyanelle and nucleomorph.

The five Swiss-Prot records described above contain nominal attributes that
may take a fixed number of textual values. In addition, one may in principle
consider numerical attributes describing protein features. Since association
rule mining cannot be directly performed over numerical data, such numer-
ical attributes are converted to nominal form by binning their values and
assigning textual labels to each bin. In this work the only numerical attribute
considered was amino acid chain length which was extracted from the Swiss-
Prot entry ID line and binned over four intervals, namely short (denoted S,
<120 amino acids), medium (M, 120–1000 amino acids), long (L, 1000–1500
amino acids), and very long (XL, >1500 amino acids).

Two types of Swiss-Prot entries were excluded from consideration—those
containing protein fragments [as indicated by the word ‘Fragment(s)’ in the
description line] and those containing the keyword ‘Hypothetical protein’ in
the list of keywords. The remaining 125 642 entries were exported to a text file
in which each protein sequence was represented by a single line containing
the list of protein characteristics delimited by commas. For example, the
human p53 protein (Swiss-Prot code P53_HUMAN) is represented by the
following line.

Apoptosis, VARSPLIC, Anti-oncogene, MOD_RES, Nuclear protein,
length:M, Polymorphism, Phosphorylation, Zinc, Eukaryota, DNA-
binding, IPR008967, Li-Fraumeni syndrome, Transcription regula-
tion, Activator, DNA_BIND, Disease mutation, METAL, ZINC, 3D-
structure, IPR002117, Alternative splicing, Metal-binding, Acetylation,
Glycoprotein, IPR010991

This line contains 3 InterPro domain assignments, 17 keywords, 5 positional
features, the item ‘length:M’ which stands for medium sequence length range
(see above), and a taxonomic assignment (Eukaryota). Following the gener-
ally accepted terminology in the area of association rule mining, we will call
each such feature an item, and a set of all or some features related to one
protein an item set.

2.2 Extracting item sets from the PEDANT genome
database

The PEDANT Genome Database (http://pedant.gsf.de) contains precomputed
information resulting from bioinformatics analyses of publicly available
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genomes. The main vehicle for similarity searches is the PSI-BLAST
algorithm (Altschul et al., 1997). This method is used for searches against the
full non-redundant protein sequence databank as well as against a number of
special datasets including the MIPS functional categories (see below) and the
COG database (Tatusov et al., 2003). In addition, the detection of PROSITE
(Sigrist et al., 2002), PFAM (Bateman et al., 2004) and BLOCKS (Henikoff
et al., 1999) sequence motifs was performed. For those sequences that have
significant matches in the Uniprot/Swiss-Prot database, the annotation of
the respective entries is analyzed and keywords and enzyme classification
are extracted. Structural categorization of gene products involves secondary
structure prediction as well as PSI-BLAST searches against the sequences
with known 3D structure as deposited in the PDB databank (Deshpande
et al., 2005) and SCOP database of known structural domains (Andreeva
et al., 2004). Other calculated or predicted structural features include molecu-
lar weight, pI, low complexity regions (Wootton, 1994), membrane regions
(Krogh et al., 2001), coiled coils (Lupas, 1997) and signal peptides (Bendtsen
et al., 2004).

Functional roles of gene products are described in terms of the manu-
ally curated hierarchical functional catalog developed by MIPS (FUNCAT;
Ruepp et al., 2004). Each of the 16 main classes (e.g. metabolism, energy)
may contain up to 6 subclasses. Correspondingly, the numeric designator of
a functional class can include up to six numbers. For example, the yeast gene
product YGL237c is attributed to the functional category 04.05.01.04, where
the numbers, from left to right, mean transcription, mRNA transcription,
mRNA synthesis and transcriptional control. An essential feature of FUN-
CAT is its multidimensionality, meaning that any protein can be assigned to
multiple categories. Similarly, the SCOP database (Lo Conte et al., 2002)
provides a hierarchical classification of protein structural domains. It has
11 main classes, designated by letters a through to j . The most prominent
classes—a, b, c, d and e—correspond to all-α, all-β, α/β, α + β, and mul-
tidomain proteins, respectively. A numeric designator of each SCOP fold
always starts with a letter denoting its main class as described above and con-
tains three numbers corresponding to three further levels of hierarchy (fold,
superfamily, family). In this work both FUNCAT and SCOP designators were
truncated to include only the two upper levels of hierarchy.

A typical description line extracted from PEDANT for association rule
mining has the following form:

COG0106, Alpha_Beta, PS00167, SCOP:c.1, complete proteome,
COG0434, pI:L, FC:01.01, COG0159, length:M, COG0826, COG1646,
COG0269, EC:4.2.1.20, FC:16.21, PF00290, hydro-lyase, complex-
ity:low, carbon-oxygen lyase, tryptophan biosynthesis, lyase.

This protein, the trpA gene product from the Acinetobacter sp. ADP1 gen-
ome, is of medium length, has low pI and sequence complexity, and was
assigned to five different COGs, SCOP fold c.1, EC number 4.2.1.20, and
functional category 16.21. In addition, it contains one PROSITE (PS00167)
and one PFAM (PF00290) motif, belongs to the α/β structural class and was
annotated with the keywords hydro-lyase, carbon–oxygen lyase, tryptophan
biosynthesis and lyase.

In total, we extracted from the PEDANT database annotation for 106 914
genes from 38 prokaryotic genomes uniformly using a rather stringent
E-value threshold of 0.00001 for all similarity search methods.

2.3 Extracting rules from annotation databases
Files containing item sets generated from the Swiss-Prot and PEDANT data-
bases served as input data to extract rules using the well established Apriori
algorithm for association rule mining. The basic Apriori algorithm, described
in detail by Agrawal and Srikant (1994), is designed to find frequent item
sets by consecutive expansion of candidate item sets on every step based
on the simple notion that all subsets of a frequent item set are also fre-
quent. In this work we used this algorithm as implemented in a commercial
software package Magnum Opus (Webb, 2000). Public domain implement-
ations also exist (e.g. as a part of the Weka machine-learning workbench
(http://www.cs.waikato.ac.nz/∼ml/weka/)), but are less efficient and not yet

suitable for analyzing very large databases. If not specified otherwise, all
rules with the coverage of at least 50 proteins and strength of at least 0.1 were
retained for further analysis.

The application of Magnum Opus results in a file containing one rule
per line. Each line lists the LHS and the RHS as well as several numerical
characteristics of the rule delimited by commas. A typical rule line in the
Magnum Opus output file looks as shown below:

DNA_BIND & Activator, Transcription regulation, 0.009,1144,0.050,
6338,0.009,1144,1.000,19.89,0.0086,1086.5

Items in the LHS are joined by the ‘&’ symbol, followed by the RHS and the
list of numerical attributes of the rule, such as coverage, coverage count, RHS
coverage, RHS coverage count, support, support count, strength, lift, lever-
age, leverage count. In this work we will only use ‘coverage count’, ‘support
count’, and ‘strength’ (1144 and 1.000 in our example) to characterize rules
generated.

The extracted rules were subjected to the following post-processing.
Several items, namely all values of the highest-level taxon of the protein
origin—Eukaryota, Bacteria, Archaea and Viruses, as well as the intervals of
protein length—length:S, length:M, length:L and length:XL, were forbidden
on the RHS.

2.4 Swiss-Prot release dynamics
In order to compare rule statistics for consecutive releases of the database we
calculated association rules for the whole set of protein entries in every release
separately as well as for the reduced set of entries shared by all releases. The
latter sample was formed by all protein entries not annotated as hypothet-
ical or a fragment in each release and had one descendant in all subsequent
releases. If two protein entries had one common descendant, both entries
were ignored. If a protein entry had more than one descendant we selected
only one of the descendants at random. The final set of shared protein entries
included 108 984 proteins. For every release we used annotation restricted to
the vocabulary shared by all releases. All new annotation terms introduced
after release 42.0 were ignored.

To reveal the corrections introduced by the Swiss-Prot staff we examined
the protein entries that constituted rule exceptions and classified these entries
as corrected if in a subsequent database release, either one of the items forming
the LHS of the associated rule was deleted from the annotation or the item
from RHS was newly introduced or altered.

2.5 Manual verification of rules
For manual verification of association rules we randomly selected a limited
sample of all protein entries from Swiss-Prot and PEDANT that constituted
exceptions from rules with strength in the range [0.97; 1.0) and, in the case of
Swiss-Prot, were not corrected by the Swiss-Prot staff in subsequent database
releases. Items of the annotation of these proteins mentioned in the LHS or the
RHS of the rules were subjected to careful manual analysis by an experienced
protein annotator according to the established procedures routinely used at
MIPS for genome annotation (Mewes et al., 1997; Horn et al., 2004). These
include assessment of similarity hits and predicted protein features as well
as in-depth examination of literature describing experimental studies. The
exception was classified as an error if one of the items of the LHS of the rule
was assigned wrongly to a given protein entry, or the required item on the
RHS of the rule was missing.

We calculated error rate for PEDANT as the fraction of exceptions
classified as annotation errors among all manually verified exceptions.
For Swiss-Prot the overall error rate was calculated as (the number of
exceptions corrected in subsequent releases + manually verified error
rate for non-synonymous rules ∗ number of uncorrected exceptions from
non-synonymous rules + manually verified error rate for synonymous
rules ∗ number of exceptions from synonymous rules)/overall number of
exceptions.
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3 RESULTS AND DISCUSSION

3.1 Statistics of association rules in Swiss-Prot
Application of the Apriori algorithm to the item sets extracted from
Swiss-Prot resulted in 302 459 rules with strength >0.1 and minimal
coverage count 50. As expected, these rules vary greatly in terms of
their coverage and strength. For example, the rule ‘Alternative Spli-
cing & Transmembrane ⇒ Eukaryota’ extracted from Swiss-Prot
has coverage count 1433, support count 1417 and strength 0.989
(≈1417/1433), indicating that there are 1433 proteins in Swiss-
Prot with simultaneously assigned keywords ‘Alternative splicing’
and ‘Transmembrane’ and 1417 of them are of eukaryotic origin.
The remaining 16 proteins originate from viruses. However, the
rule ‘Alternative splicing & Nuclear protein ⇒ Repressor’ has 129
confirmations from 1288 covered proteins (support count = 129,
coverage count = 1288, strength 129/1288 ≈ 0.1), implying that
only a small fraction of all nuclear proteins subjected to altern-
ative splicing are repressors, whereas these three keywords taken
separately occur frequently among Swiss-Prot protein entries.

Strength distributions of Swiss-Prot rules for different values of
minimal coverage count are shown in Figure 1. A prominent fea-
ture of these distributions is the presence of two distinct peaks in the
regions of very weak and very strong rules, with rules in the medium
strength range being relatively infrequent. A large number of weak
rules (strength <0.2) originate from diverse combinations of frequent
items, such as the majority of the Swiss-Prot keywords or features.
These combinations are typically not wrong, but they do not repres-
ent typical associations between items. For example, the Swiss-Prot
entry Q6W2J9 (BCoR protein from Homo sapiens functioning
as transcriptional corepressor) contains the keywords ‘Alternative
splicing’, ‘Nuclear protein’ and ‘Repressor’ and conforms to the
rule ‘Alternative splicing & Nuclear protein ⇒ Repressor’. It has
repressor function, localizes in the nucleus, as in the case of the
majority of transcription factors, and is subject to alternative splicing.
But only a certain fraction of all repressors have multiple alternat-
ively spliced isoforms, and thus this rule is not classified here as a
biological regularity.

The other extreme on Figure 1 is constituted by very strong rules
with strength values in the range roughly between 0.95 and 1.0. In
particular, there are 63, 287, 1807, 7751 and 24 288 rules whose
strength exactly equals 1.0 for the minimal coverage counts of 1000,
500, 200, 100 and 50, respectively. For example, all 1554 proteins
annotated with the keyword ‘G-protein coupled receptor’ also have
the keyword ‘Transmembrane’ whereas all 1904 proteins having
the feature ‘MITOCHONDRION’ in the FT line also contain the
keyword ‘Transit peptide’.

In this study we specifically focus on the strong rules with the
strength over a certain threshold (typically 0.95), but <1.0. These
rules are nearly always fulfilled, but exceptions from them do occur in
the database. For example, at the minimal coverage count of 50 there
are 7396, 4956 and 4046 rules in the Swiss-Prot database that are not
fulfilled exactly once, twice or three times. As argued above, such
exceptions may constitute annotation errors which can be detected
and corrected, or at least flagged, automatically.

Can strong rules occur by chance? To answer this question we
studied the behavior of a database generated by randomly shuffling
annotation items such that feature frequencies and the number of
features for each protein were preserved. As seen in Figure 2a, the
random distribution is characterized by complete absence of rules

Fig. 1. Distribution of association rule strength in the Swiss-Prot database.
The four curves correspond to sets of rules with minimal coverage 50 ( ),
100 ( ), 200 (—×—) or 500 ( ).

(a)

(b)

Fig. 2. (a) Distribution of association rule strength in the random database
constructed based on Swiss-Prot (see Section 2). The first two curves corres-
pond to the rules with minimal coverage 50 ( ) or 100 ( ), the last two
curves, (—×—, ), to the same sets after filtration (deletion of all rules with
one of three most frequent items in their RHS). (b) Distribution of association
rule strength in the real (Swiss-Prot) and random databases after filtration (see
Section 2). The first two curves correspond to the rules with minimal cover-
age 50 ( ) or 100 ( ) for the real Swiss-Prot database, the last two curves
(—×—, ), to the corresponding rules of the random Swiss-Prot-based
database.

stronger than 0.88 and a much larger fraction of weak rules (strength
below 0.2) than the real database. Notably, two unexpected peaks
with strength 0.40 and 0.62 present on this curve reflect frequent
occurrence of rules containing one of the three most frequent items
in their RHS. More specifically, the left-hand peak of strength ∼0.40
almost completely (444 rules of 450, 98.6%) consists of rules with
one of the two features—Bacteria or Eukaryota—in the RHS. The
majority (221 of 259, 85.3%) of the rules corresponding to the peak at
strength ∼0.62 include the feature ‘length:M’ (middle size range) in
their RHS, whereas all remaining rules of the peak have ‘Bacteria’
or ‘Eukaryota’ in the RHS. These three features are the most fre-
quent items in Swiss-Prot annotation among all the items considered
in this study. Exclusion of rules with such RHS eliminated all rules
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stronger than 0.38 in the random database (Fig. 2a), but did not influ-
ence the real Swiss-Prot curve (data not shown). We thus conclude
that the presence of strong, and indeed even medium-strength rules
(with strength roughly over 0.4), is significantly non-random and
cannot be explained by mere statistical effects caused by particular
feature composition of the Swiss-Prot database. Such rules reflect
meaningful associations between protein annotation attributes.

It should be noted that the rule strength distributions shown in
Figure 2a were constructed without the post-processing usual for
the real Swiss-Prot database (see Section 2). Application of such
post-processing rules to the random database led to disappearance of
the peaks at strength values 0.40 and 0.62 discussed above because
the prominent items (Eukaryota, Bacteria and length:M) responsible
for the frequent occurrence of these rules got eliminated from the
RHS (Fig. 2b). The corrected curves for the random database should
consequently be used as a comparative standard for Swiss-Prot since
they are derived according to exactly the same procedure that was
used for the real Swiss-Prot database.

We also studied the behavior of two non-protein databases,
the Forest CoverType database and the Adult Database taken
from the UCI Knowledge Discovery in Databases Archive
(http://kdd.ics.uci.edu/) and found qualitatively similar tendencies
in rule strength distributions (see Supplementary Text 1). We thus
believe that the shape of rule strength distribution shown in Figure 1
may be typical for many (although possibly not all) sufficiently large
databases containing significant amounts of non-random data. A
detailed theoretical analysis of these phenomena is beyond the scope
of the present work.

3.2 Types of Swiss-Prot-derived association rules
For better understanding of association rules derived from the Swiss-
Prot annotation we classified them according to the composition of
their LHS and RHS. Three types of LHS were considered: (1) those
containing keywords only, (2) those with mixed annotation (i.e. LHS
includes several items of different Swiss-Prot fields) and (3) those
with LHS containing items from one and the same Swiss-Prot field
different from keywords. Similarly, we distinguished the RHS types
containing InterPro domains, a feature from the Swiss-Prot FT line,
or a keyword. As seen in Figure 3, the most prominent rules are
those inferring keywords and InterPro domains from mixed LHS. The
fraction of the rules of the latter group grows significantly with rule
strength, whereas the former group displays an opposite behavior.
Also strongly dependent on strength are rules of the type ‘mixed
LHS to FT feature’ which are characteristic for strong rules. All
other rule types appear to be evenly distributed in terms of their
strength. The total fraction of rules with RHS other than keyword,
feature and InterPro is rather insignificant.

3.3 Dynamics of Swiss-Prot releases and error
correction

Approximately every half year, a new release of the Swiss-Prot data-
base is made available with novel protein entries added as well as
some preexisting entries revised. At the same time, annotation vocab-
ulary gets extended by new terms which may be introduced both to
old and new entries. We analyzed the influence of these changes
on the complete set of association rules. As seen in Figure 4, the
total number of rules derived from Swiss-Prot steadily grows with
the number of entries, from 232 556 for release 42.0 to 445 270 for
release 47.0, mostly owing to introduction of new database entries.

Fig. 3. Composition of rules in terms of their constituent items. For each
interval of strengths the fraction of rules of a given type according to the
Swiss-Prot field classification is given (see text for details).

Fig. 4. Dynamics of rules the Swiss-Prot annotation. The reduced set of pro-
teins is constituted by the 108984 Swiss-Prot entries common to all releases
considered, with the annotation dictionary corresponding to Release 42.0.

Fig. 5. Distribution of annotation corrections over rule strength ranges in
Swiss-Prot releases 44.0–47.0.

If one takes into account only the protein entries shared between all
releases under study, the growth of the rule number becomes much
slower, especially if only shared annotation vocabulary is considered
(Fig. 4). In this case the slight increase is mostly because of the intro-
duction of additional annotation items from the shared vocabulary
to revised Swiss-Prot entries, or, in very rare cases, to elimination of
certain items.

As one progresses from one release to another, many exceptions to
association rules get corrected. Figure 5 displays the strength distri-
bution of such corrected rules. In line with our main assumption, the
exceptions to the strongest rules get corrected more often. 23.5% of
protein entries that constituted exceptions to the rules with strength in
the range [0.97; 1) found in the Swiss-Prot release 44.0 were correc-
ted until the release 47.0 (see Section 2), while the average percentage
of corrected exceptions to the rules of any strength was 3.47. As an
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additional test, all 350 exceptions from randomly selected 149 rules
in the strength range [0.97; 1) not corrected by Swiss-Prot staff were
subjected to careful manual evaluation. We found that 24.7% of these
exceptions indeed constituted annotation errors (see Supplementary
materials). We thus estimate that the total percentage of exceptions
associated with errors in strong rules is ∼41%.

As an additional test for errors we investigated the compat-
ibility of annotation within protein entries by confronting the
annotation synonyms from different annotation fields. All items
whose names differed only in the letter cases were considered syn-
onyms. In addition, the following trivial correspondences in feature
and keyword fields were treated as synonyms: TRANSMEM and
‘Transmembrane’, VARSPLIC and ‘Alternative splicing’, LIPID
and ‘Lipoprotein’, ZN_FING and ‘Zinc-finger’, CA_BIND and
‘Calcium-binding’, SE_CYS and ‘Selenocystein’, DNA_BIND and
‘DNA-binding’, METAL and ‘Metal-binding’, as well as CAR-
BOHYD and ‘Glycoprotein’. There are also some correspondences
between the KW and OG as well as between the FT, KW and OG
fields. As one would expect, some of the rules containing synonyms
of this kind in their LHS and RHS are perfect, meaning that, for
example, the rule ‘Signal (keyword) implies SIGNAL (feature table)’
is true in all possible cases (has strength 1) as well as the reverse
rule, ‘SIGNAL (feature table) implies Signal (keyword)’, which is
also always true. However, quite often synonym pairs generate per-
fect rules only in one direction, e.g. ‘LIPID implies Lipoprotein’,
whereas the reverse rule (‘Lipoprotein implies LIPID’) is satisfied
only in 97% of cases. At the same time, many synonym pairs are
not strongly coupled. For example, for proteins with documented
alternative splicing, 4739 entries include both the keyword ‘Altern-
ative splicing’ and the feature VARSPLIC, 564 entries include only
the keyword ‘Alternative splicing’ and, finally, 5 entries include only
VARSPLIC. All rules of the type ‘item implies its synonym’ were
considered synonymous rules. We also identified a large number
of nearly identical rule pairs differing by only one item in which
synonyms are used.

Based on manual verification of the 15 strongest and 30 randomly
selected synonymous rules not corrected by the Swiss-Prot staff with
the total of 161 exceptions from rules within the strength range [0.97;
1) we estimate that ∼33% of these exceptions contain errors. Thus,
taking into account synonymous rules, the overall fraction of excep-
tions associated with annotation errors is slightly over 43% for rules
in the considered strength interval. Among all the manually veri-
fied Swiss-Prot exceptions classified as errors only 14% were owing
to wrong assignment of one item in the LHS of the rule. All other
errors result from omission of an RHS item, implying that Swiss-Prot
annotation errors are typically caused by under-annotation. In most
cases these errors are constituted by essentially trivial misannotations
in which missing features can easily be reconstructed by similarity
searches or computational predictions. For example, the TMHMM
software predicts five transmembrane segments with the probabil-
ity 1.0 in the entry P34641, but both the TRANSMEM item of the
feature table and the keyword ‘Transmembrane’ are not specified.
Sometimes correct information is present in free-text annotation but
not in one of the formalized fields. For example, nuclear localiza-
tion of the protein Q9U405 is indicated in ‘Comments’ based on the
literature reference with the PubMed ID 10683177, but the keyword
‘Nuclear protein’ is omitted.

As a less trivial example, translation initiation factor eIF-2B α sub-
unit (P14741) (synonym: transcriptional activator GCN3) regulates

translation of GCN4 and represents the only exception from the rule
‘DNA-binding & Activator ⇒ Transcription regulation’. Detailed
analysis of this protein failed to produce any evidence of its cap-
ability to bind DNA. It does not appear to possess a DNA-binding
domain, and no experimental confirmation was found in the liter-
ature. Consequently, this exception was classified as an LHS error
(erroneous assignment of the item from the LHS of the rule). Another
example is Q47689 associated with one of the four exceptions from
the rule ‘length:M & IPR002293 ⇒ Amino-acid transport’. The RHS
keyword was omitted in the annotation of this entry, whereas this
protein’s involvement in the transport of sulfur amino acids is docu-
mented in the literature (PMID: 9882684). This case was classified
as an RHS error (or the omission of the RHS item).

Another interesting issue is the proteins associated with the
largest number of exceptions from strong rules. The most ‘dis-
obedient’ protein entry in Swiss-Prot is P00545, tyrosine-protein
kinase transforming protein fms. Its annotation contains exceptions
to 409 different association rules in the strength range between
0.95 and 1, with 286 of them attributed to the fact that this
protein is the only non-precursor (consequently, without a signal
peptide) among many tyrosine kinases with very similar annota-
tion; thus, this case does not constitute an error. Furthermore,
104 rules contained the feature ‘ACT_SITE’ (enzymatic active site)
in their RHS that was erroneously omitted in annotation of this
entry, although it can easily be reconstructed by similarity-based
annotation transfer (data not shown). The second and third most dis-
obedient proteins are Q9LYN8, a precursor of leucine-rich repeat
receptor protein kinase EXS, which contradicted 321 rules, and
P42159 (class II receptor tyrosine kinase) which is an exception
to 305 rules, respectively. Q9LYN8 contradicts 286 rules with ‘N-
LINKED’, ‘CARBOHYD’ or ‘Glycoprotein’ in their RHS, features
that can be reconstructed by similarity-based methods. Furthermore,
40 other rules associated with Q9LYN8 having exceptions contain
the InterPro domain IPR001245 which was falsely (according to
InterProScan, http://www.ebi.ac.uk/InterProScan/) assigned to this
protein entry up to release 47.0. P42159 is the only protein annot-
ated in the mature form in its group. Consequently, 214 rules with
the keyword Signal or feature SIGNAL in their RHS and the excep-
tion in this protein are correct, whereas the remaining 91 rules for
P42159 lead to keyword ‘Glycoprotein’ that have been omitted in its
annotation up to the release 46 of Swiss-Prot.

Finally, what is the nature of the exceptions from strong rules that
are not annotation errors? Quite often such exceptions stem from
exotic peculiarities of one member in a protein family, exemplified
by the protein entry P00545 discussed above. In some other cases
they reflect real biological regularities which do in fact have a minor
number of exceptions. This is the case for the rule involving the
two keywords ‘Ubiquinone ⇒ NAD’, exceptions from which are
constituted by only 5 of all 1014 proteins interacting with ubiquinone
that use FAD as a cofactor instead of NAD.

3.4 Estimating the level of annotation errors in
PEDANT

The above findings, based on the in-depth analysis of Swiss-Prot
annotation, provide justification for our strategy to flag exceptions
from strong rules as potential annotation errors. Application of the
same procedures to the automatically generated PEDANT annotation
revealed that statistical properties of the association rules gleaned
from the PEDANT database are similar to that of Swiss-Prot (Fig. 6).
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Table 1. Estimation of the number of errors

Strength
interval

Rules
(Sw-Pr)

Exceptions
(Sw-Pr)

Errors
(Sw-Pr),
estimate

Rules
(PEDANT)

Exceptions
(PEDANT)

Errors
(PEDANT),
estimate

0.99-1.0 4032 5474 2772 (1368a) 17 426 25 694 18 438
0.98-0.99 7391 14 597 7099 (3302a) 38 724 72 658 47 467
0.97-0.98 4024 18 634 6814 (4431a) 16 520 72 259 49 425

The number of errors was estimated based on the extrapolation from the limited randomly selected sample of rules: see the text for details.
Sw-Pr: Swiss-Prot.
aAre already corrected by Swiss-Prot staff.

Fig. 6. Distribution of association rule strength for the PEDANT database.
The four curves correspond to rules with minimal coverage 50 ( ), 100 ( ),
200 (—×—) and 500 ( ).

Here too, strong enrichment of very weak and very strong rules was
observed, with rules in the intermediate strength range being rel-
atively rare. Compositional breakdown of PEDANT rules (Fig. 7)
revealed that functional category assignments play an increasingly
important role as the strength of rules grows. Interestingly, most of
the FUNCAT inferences in the medium range of rule strength are the
result of mixed items in LHS (LHS includes several items of different
Swiss-Prot fields), whereas the strongest rules typically derive a func-
tional category from one or more other functional categories. This
behavior is the direct consequence of the FUNCAT structure which,
by design, is multidimensional such that each gene can be assigned
to multiple categories (Ruepp et al., 2004). Rules inferring BLOCKS
and PFAM domains in the RHS occur only in low strength range,
implying their marked independence from other types of annotation
as well as from each other.

Since PEDANT annotation typically never gets corrected manu-
ally (except for occasional in-house genome annotation efforts, see
Horn et al., 2004), and there is thus no release dynamics as in the case
of Swiss-Prot, the only way to estimate the amount of errors in the
strong rules with exceptions is by manual verification. We analyzed
a randomly selected sample of 144 rules in the strength range [0.97;
1). About a half of the sample was selected at random, whereas the
second half was selected among rules showing at least one excep-
tion associated with a protein contained in Swiss-Prot to ensure that
this protein is reasonably well documented. To reduce the manual
effort, for rules with more than 10 exceptions we curated carefully
only a subset of exceptions, unless they were associated with Swiss-
Prot proteins. The overall number of curated exceptions was 330.
The total fraction of exceptions classified as errors in PEDANT was
close to 68%. The estimated number of errors for each considered
strength interval is presented in Table 1.

Fig. 7. Composition of rules in terms of their constituent items in the PED-
ANT database. For each interval of strengths the fraction of rules of a given
type according to the PEDANT field classification is given (see the text for
details). All rule categories involving >5% of all rules in the given strength
interval are accounted for separately, with all other rules shown as ‘others’.

In contrast to Swiss-Prot, 30% of all errors revealed in PEDANT
by manual curation were because of omission of an RHS item. Other
errors resulted from false assignment of the items in LHS of the rules,
or over-annotation. The list of all manually verified cases is available
in Supplementary materials.

4 CONCLUSIONS
We have developed a general methodology called ARIA for improv-
ing the quality of biological data based on the notion that exceptions
from strong association rules derived from annotation items often
point to errors. In contrast to the Xanthippe system (Wieser et al.,
2004), such exceptions are sought in the entire database, and not
within individual protein families. This new approach is primarily
made possible by the much higher computational efficiency of the
Apriori algorithm compared with the C4.5 method used by Wieser
et al. which scales roughly as a cube of the number of examples
(Cohen, 1995) and would require years of CPU time to process data-
bases with hundreds of thousands of entries such as PEDANT. Higher
efficiency of association rule mining also allowed us to consider
essentially all biologically meaningful annotation items whereas the
Xantippe system primarily operates with rules involving organism
and domain information in their LHS to derive keywords and pro-
tein names in the RHS. The sets of rules generated by ARIA and
Xanthippe are thus fundamentally different as are their application
domains. Xanthippe is well suitable for a highly organized and
curated database, such as Swiss-Prot, where reliable core annota-
tion exists, whereas ARIA may be applied to large automatically
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generated collections of data where no gold standard of correctness
is available.
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