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The NAD biosynthetic pathway and NAD transformations in E. coli and S. typhi are
well characterized. Using comparative genomics methods we describe the NadR regulon
in other Enterobacteriaceae, identity new candidate regulon members and demonstrate
that even a very simple regulon covering an essential methabolic pathway could be
different in closely related genomes.
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1. Introduction

The comparative approach to the analysis of regulation is based on the assumption
that regulons are conserved in related bacteria containing ortologous transcription
factors.

This approach, reviewed in Refs. 1–3, has been successfully applied to the anal-
ysis of many regulatory systems4–15 and served as a base for large-scale analy-
ses of regulation in all prokaryotes,16,17 as well as selected taxonomic groups of
gamma-proteobacteria,18,19 delta-proteobacteria,20 and gram-positive bacteria,21,22

resulting in identification of numerous new signals and functional annotation
of tens of hypothetical genes. Many of such predictions were subsequently con-
firmed in experiment,23,24,12 or even served as a starting point for experimental
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analysis.18,25–27 There exist several Internet servers for comparative analysis of
bacterial regulation, in particular, EnteriX28 and PredictRegulon.29

In an attempt to analyze the evolutionary dynamics of a relatively simple, well-
studied regulon that includes genes from an essential part of the metabolism, we
considered the NadR regulon in Enterobacteriaceae.

The nicotinamide adenine dinucleotides (NAD, NADH, NADP, NADPH) are
essential cofactors in all living systems and function as hydride acceptors (NAD,
NADP) and donors (NADH, NADPH) in biochemical redox reactions.30 At high
internal levels of NAD, the transcriptional regulator NadR represses the de novo
synthesis and salvage pathways. NadR is a multifunctional protein, consisting of
an N-terminal DNA-binding domain which represses NAD biosynthesis, a cen-
tral nicotinamide mononucleotide adehyltransferase (NMNAT) domain and a C-
terminal RNK domain.31,32

The NAD biosynthetic pathway and transformations are shown in Fig. 1.31

Genes known to be repressed by NadR in E. coli and S. typhi are marked by
rectangles. These are two NAD biosynthesis genes, nadA and nadB, and a niacin
salvage gene pncB.32,33

2. Data and Methods

The complete genomes of Escherichia coli K-12 MG165534 (EC), Shigella flexneri
2457T35 (SF), Salmonella typhi CT1836 (ST), Erwinia carotovora subsp. atroseptica
SCRI104337 (ERW), Yersinia pestis CO9238 (YP) and Photorhabdus luminescens
subsp. laumondii TT0139 (PHL) were obtained from Genbank.40
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Fig. 1. The NAD biosynthetic pathway and transformations in Enterobacteriaceae.

Notation: “*”: enzymatic domain; “#”: NMN transporter, regulated within the nadApnuC operon.
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Incomplete genomes of Klebsiella pneumoniae MGH78578 (KP) and Serratia
marcescens Db11 (SM) were downloaded from the websites of the Washington
University Consortium (www.genome.wustl.edu), and Yersinia enterocolitica 8081
(YE), from the Sanger Institute website (www.sanger.ac.uk).

Profiles (positional weight matrices) for the identification of candidate NadR-
binding sites were constructed using SignalX.4 The training set consists of upstream
regions of nadA from E. coli, S. typhi and Y. pestis, nadB from E. coli and S. typhi,
and pncB from E.coli, S.typhi and Y. pestis.

Sequence logo was constructed using WebLogo.41 Orthologs were identified
by the bidirectional best hits criterion42 and, if necessary, verified by construc-
tion of phylogenetic trees using PHYLIP.43 Multiple nucleotide and protein align-
ments were constructed using ClustalX.44 Genome analyses were performed using
GenomeExplore.45

3. Results and Discussion

NadR orthologs were identified in all studied Enterobacteria. Multiple protein align-
ment demonstrated that NadR orthologs in all considered genomes contained DNA-
binding domain, NMNAT domain and RNK domain.

It is known that in some gamma-proteobacteria, for example in Haemophilus
influenzae, NadR orthologs do not contain the DNA-binding domain31 and thus
have only enzymatic, but not regulatory role. Indeed, no DNA-binding domains
were found in NadR orthologs from genomes outside the Enterobacteriaceae
and Pasteurellaceae families. Among the latter, Haemophilus influenzae is the
only genome with NadR lacking the DNA-binding domain. NadR of other Pas-
teurellaceae have the DNA-binding domain, but these genomes have no nadA,
nadB and pncB orthologs, nor do they have candidate sites for the enterobacte-
rial NadR-signal. Thus here we restricted the analysis to the NadR regulon in
Enterobacteriaceae.

The recognition profile was constructed as described above. The sequence logo
of the NadR signal is shown in Fig. 2.

Fig. 2. Sequence logo of NadR-sites from the training set. The total height of the symbols in each
position equals the positional information content, whereas the height of individual symbols is
proportional to the positional nucleotide frequency, with the most frequent nucleotide shown at

the top.
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The signal is a palindrome with six conserved positions at each side and a spacer
of six relatively less conserved positions.

The study started with identification of orthologs of genes that constitute the
NadR regulon in E. coli and analysis of their regulation. The results are shown in
Table 1.

NadR-sites of the nadA genes are conserved and they form the only conserved
island in the alignment of upstream regulons (Fig. 3).

Additional candidate sites were identified in S. marcescens E. carotovora.

Fig. 3. Conservation of NadR-sites upstream of nadA. The sites are shadowed; positions conform-
ing to the signal consensus and start codons (ATG) are set in boldface.
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Fig. 4. Conservation of NadR-sites upstream of nadB. Notation as in Fig. 3.

Unexpectedly, NadR-sites upstream of other regulon members are not well con-
served in genomes other than S. typhi and E. coli.

The NadR-site upstream of nadB is conserved in E. coli, Sh. flexneri, S. typhi,
and K. pneumoniae (Fig. 4).

The corresponding regions of other genomes are not conserved, nor they contain
candidate NadR-sites.

The situation with pncB is somewhat more interesting (Fig. 5a).
The site is conserved in E. coli, Sh. flexneri and S. typhi. The corresponding

region in K. pneumoniae and S. marcescens is not conserved, although there are
two conservation islands on both sides. Thus the NadR sites were destroyed in these
genomes. New candidate sites appeared instead and these new sites do not seem to
originate from local duplications. Indeed, there is no sequence conservation around
“old” and “new” NadR-sites (Fig. 5b).

No sites were found in the remaining genomes.
In an attempt to find new candidate members of the NadR regulon, we iden-

tified candidate sites and considered all genes with candidate sites in at least four
genomes. Unexpectedly, one of such genes was nadR itself, that had a strong can-
didate site in E. carotovora, S. marcescens, Y. pestis and Y. enterocolitica. The
alignment of the upstream regions is shown in Fig. 6.

The “four-genome” condition holds in two more cases: two genes ynfL and ynfM
transcribed in opposite directions, and rpsP.

The gene ynfl encodes a putative regulator from the LysR family, whereas ynfM
encodes a putative transporter. We identified ynfLM ortjologs in Pseudomonas spp.
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Fig. 5a. Conservation of “old” NadR-sites upstream of pncB. Notation as in Fig. 3.

Fig. 5b. Alignment of “new” NadR-sites upstream of pncB. Notation as in Fig. 3.
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Fig. 6. Alignment of regions upstream of nadR. Notation as in Fig. 3.

Fig. 7. Alignment of regions upstream of ynfL. Notation as in Fig. 3.
Notation: “PF” — Pseudomonas fluorescens CHA0, “PSY” — Pseudomonas syringae, “PP” —
Pseudomonas putida, “AV” — Azotobacter vinelandii, “BPA” — Bordetella parapertussis.

and in Bordetella parapertussis and constructed multiple alignment of the intergenic
region in all considered genomes (Fig. 7).

The conserved region coincides with the spacer of the candidate NadR binding
site. On the other hand, there is no NadR regulator in B. parapertussis and in
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Fig. 8. Alignment of regions upstream of rpsP. Notation as in Fig. 3.

Pseudomonas spp., and thus this region cannot be a NadR-site. Since the arrange-
ment where a binding site occurs between a divergently transcribed regulator gene
and a regulated operon is very common, we conclude that the conserved region
is the YnfL binding site. However, it is a very tentative prediction, requiring an
experimental verification.

The gene rpsP encodes small ribosomal subunit protein S16. The nucleotide
sequence of the rpsP upstream regions is uniformly conserved (Fig. 8).

This fact and the function of RpsP makes it unlikely that the observed site is
functional.

4. Conclusions

This study demonstrated that even a very simple regulon covering an essen-
tial methabolic pathway could be different in closely related genomes. Not only
the set of regulated genes can vary, but the autoregulation of the nadR gene
by NadR, predicted here for the first time, is a feature of several, but not all
genomes.

One of the possible explanations could be that the NadR regulon itself is
rather young, as it exists in only one family of gamma-proteobacteria. However, the
same behavior was observed for a number of other regulons, in particular Lrp,46,47
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FruR,46 KdgR.25 More sequenced genomes are needed to elucidate the exact history
of the NadR regulon.
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