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ABSTRACT
Motivation: Transcription regulatory protein factors often bind DNA
as homo-dimers or hetero-dimers. Thus they recognize structured
DNA motifs that are inverted or direct repeats or spaced motif
pairs. However, these motifs are often difficult to identify owing to
their high divergence. The motif structure included explicitly into
the motif recognition algorithm improves recognition efficiency for
highly divergent motifs as well as estimation of motif geometric
parameters.
Result: We present a modification of the Gibbs sampling motif extrac-
tion algorithm, SeSiMCMC (Sequence Similarities by Markov Chain
Monte Carlo), which finds structured motifs of these types, as well
as non-structured motifs, in a set of unaligned DNA sequences. It
employs improved estimators of motif and spacer lengths. The prob-
ability that a sequence does not contain any motif is accounted for in a
rigorous Bayesian manner. We have applied the algorithm to a set of
upstream regions of genes from two Escherichia coli regulons involved
in respiration. We have demonstrated that accounting for a symmetric
motif structure allows the algorithm to identify weak motifs more accur-
ately. In the examples studied, ArcA binding sites were demonstrated
to have the structure of a direct spaced repeat, whereas NarP binding
sites exhibited the palindromic structure.
Availability: The WWW interface of the program, its FreeBSD (4.0)
and Windows 32 console executables are available at http://bioinform.
genetika.ru/SeSiMCMC
Contact: favorov@sensi.org
Supplementary information: Supplementary material available at
http://bioinform.genetika.ru/SeSiMCMC

1 INTRODUCTION
Extraction of a common motif from a set of unaligned sequence
fragments (also known as the multiple local alignment or MLA

∗To whom correspondence should be addressed.

problem) is often applied to identify DNA sites that are recognized
by transcription factors. This approach is based on the assumption
that DNA segments upstream of coregulated genes contain similar
nucleotide subsequences.

Usually the analysis starts from a sample of DNA sequences, the
majority of which are supposed to contain a protein-binding site (or
some other specific segment). Therefore, these sequences include
instances of the same motif. The objective is to classify all DNA
sequence data into motif instances and the remaining background
in an optimal manner. Different approaches to this problem were
recently reviewed (Bulyk, 2003) and probabilistic methods based on
Gibbs sampling (Roth et al., 1998; Hughes et al., 2000; Thijs et al.,
2002; Thompson et al., 2003) appear to be the most efficient. Here
we present a tool optimized to solve a specific variation of the MLA
problem: identification of a motif exhibiting a double-box structure.
Special cases of such structured motifs, the inverted and direct repeat,
are often recognized by prokaryotic transcription factors, as demon-
strated in the analysis and prediction of gene coregulation both in
prokaryotes (Gelfand et al., 2000) and eukaryotes (Chiang et al.,
2003). Usually, the motif, either symmetric or otherwise, is spaced,
i.e. it contains several poorly conserved positions in the middle. Such
dyad structures are recognized by factors binding in their dimer form
(Pilpel et al., 2001) and this knowledge has been exploited in several
powerful motif extraction tools (van Helden et al., 2000; Li et al.,
2002; Robin et al., 2002; Mwangi and Siggia, 2003). Recent exper-
iments on direct cross-linking of transcription regulatory proteins to
DNA (Harbison et al., 2004) demonstrate that the pairs or clusters
of binding sites, either identical or different, separated by spacers
of approximately fixed length are also very common in eukaryotes.
Identification of structured motifs by a general Gibbs sampling pro-
cedure appears to improve prediction. Since one usually does not
know in advance the motif length and the spacer length, the program
should estimate the optimal values for these two parameters during
motif detection. In addition, the program will need to handle train-
ing sets that may contain biologically irrelevant sequences without a
target site.
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2 SYSTEM AND METHODS
In order to create a specialized tool for finding weak motifs with spacers
of unknown length, we designed a probabilistic model and an optimization
procedure (Favorov et al., 2002), modifying the classic algorithm of Lawrence
et al. (1993). Such a specialized tool might be more adequate for this particular
task than a universal one (Hughes et al., 2000; Liu, 2001; Thijs et al., 2002).

Two probabilistic models, foreground (the motif) and background, are for-
mulated. The optimal classification is the one most probable in the Bayesian
sense (Sivia, 1996). The motif is represented by a positional probability mat-
rix (Berg and von Hippel, 1987; Stormo and Hartzell, 1989; Lawrence et al.,
1993; Bailey and Elkan, 1995; Hertz and Stormo, 1999); the background is
modeled by independent symbols with fixed probabilities of DNA bases.

We maximize the posterior of the given foreground–background partition
of the DNA sequence data as a function of the site positions in the sequences
from the training set. Such a function may have many local maxima, so the
Markov Chain Monte Carlo (MCMC) technique (Besag et al., 1996; Robert,
1998; Liu, 2001) is a natural algorithm for its optimization. The MCMC
variant known as Gibbs sampling (Geman and Geman, 1984) has been applied
to the MLA problem in Lawrence et al. (1993) and has become one of the
most popular approaches to motif extraction in biological sequences (Roth
et al., 1998; Hughes et al., 2000; Thijs et al., 2002; Liu et al., 2002). The
algorithm implemented in the SeSiMCMC software additionally does not
require specification of the length of the motif. The algorithm searches for
either direct repeat or palindromic (two inverse complementary boxes) motif
structures as specified by the user, possibly separated by a spacer of unknown
length. Occurrences of non-palindromic motifs, both single and double boxes,
can be searched for in one or both complementary DNA strands.

3 ALGORITHM
The probabilities q(i, r) for the occurrence of nucleotide r at site
position i, i = 1..s, where s is the site length and the background
nucleotide probabilities f (r) are estimated from the in-site and the
background counters denoted by c(i, r) and g(r):

q(i, r) = c(i, r) + b(r)

M + B
(1)

and

f (r) = g(r) + b(r)

K + B
, (2)

where M is the number of sites in the set, from which the statistics
are derived, K is the number of all non-site positions in the data.
Pseudocounts b(r) are proportional to the frequencies of nucleotides
in the full dataset, while their sum

B =
∑

r

b(r) ∼ √
N ,

where N is the number of data sequences (Lawrence et al., 1993).
For motifs that are supposed to be (imperfectly) symmetrical, the

formula for q(i, r) reflects the symmetry. For direct repeats it is
given by

q(i, r) = c(i, r) + c (i + int((s + 1)/2), r) + 2b(r)

2(M + B)
, (3)

while for palindromes (inverted repeats) it is given by

q(i, r) = c(i, r) + c(s + 1 − i, r̄) + b(r) + b(r̄)

2(M + B)
, (4)

where s is the motif length and r̄ is the nucleotide complementary to r .
The core procedure for selection of a set of similar sites is as

follows. We start with randomly scattered sites of a definite length,

one per sequence. Then, we organize a cycle of one-by-one updates
of site positions. At each step, we select only one sequence. For
uniformity, we treat the site absence as a position of a specific
type (‘null’). At each step, we collect the nucleotide statistics
for the internal site positions and for the background from all
sequences except the one being updated. We estimate the posi-
tional nucleotide probabilities within the motif with formulae (1),
(3), (4) and the background probabilities using formula (2). For each
selected sequence R = r1r2 · · · rl−1rl , the probability (likelihood) to
obtain this sequence from a Bernoulli process (i.e. the site position
likelihood) given the site position k is:

P(R|[k], q, f ) =
k−1∏
i=1

f (ri)

k+s−1∏
i=k

q(i − k + 1, ri)

×
L−s+1∏
i=k+s

f (ri) k �= 0 (5)

P(R|[0]) =
L−s+1∏

i=1

f (ri),

where ri is the i-th nucleotide in sequence R and [k], k = 1..(L −
s +1) denotes the event ‘the site starts at position k’, [0] corresponds
to the case where the site is absent (‘null position’). The prior P ([0])
is a user-defined probability for a sequence from the data to be noise
(the sequence does not contain any site). All non-zero positions have
equal probabilities a priori, thus the prior of the event [k]

P([k]) = 1

L − s + 1
(1 − P [0]) k �= 0. (6)

The marginal probability of the sequence itself (evidence) is:

P(R|q,f ) =
L−s+1∑

k=0

P(R|[k], q, f ) · P([k]). (7)

The probability (posterior) for a site to start at k is:

P([k]|R, q, f ) = P(R|[k], q, f )P ([k])
P (R|q,f )

= P(R|[k], q, f )P ([k])
P (R|q,f )

.

(8)

So combining the priors with the likelihoods in the usual Bayesian
way, we obtain the posterior distribution for a site position in the cur-
rent sequence and sample the new site position (possibly the ‘null’
one) from this distribution. The process is iterated until the chain
comprising sets of site positions converges (i.e. the step-to-step
changes become small). The algorithm is similar to the one described
in Lawrence et al. (1993), but we include the possibility of the
absence of a site in the Bayesian way at each update.

In fact, the algorithm optimizes the self-consistency of a set of site
positions, making it very sensitive to changes in the mutual arrange-
ment of the sites (i.e. it is quite tolerant to all as one shifts of the
site position set). To overcome this problem, we adjust the results
from time to time after the core algorithm converges satisfactorily
and then restart the core. The adjustment is a deterministic search for
the best solution among all possible cooperative shifts of the local
alignment of sites.
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At the adjustment step the best set of sites is defined by the
highest information content per site position (ICP) in the signal. The
information content is the sum of two components: the structural
one and the spatial one. Both are related to the Kullback entropy
distances. The structural component is the distance between the
probability model for the nucleotide occurrence inside the motif
(the position–probability matrix) and the background probability
distribution:

Istruct =
s∑

i=1

4∑
r=1

c(i, r) · log2

(
q(i, r)

f (r)

)
. (9)

Now, the counters c(i, r) and the model parameters q(i, r) and
f (r) are evaluated using all sequences. Formula (9) is different
from the standard Kullback entropy distance in that we use c(i, r)
as the factor and q(i, r) as the log argument. The distance between
the estimated probability distribution of symbols in the alignment
position q(i, r) (which contains pseudocounts) and the background
distribution f (r) is calculated using the observed data c(i, r). In
standard Kullback distance measure, there are only two distributions
and no observed data; in this case q(i, r) would appear at both places.
Note that the constant M in the denominator in Equation (11) given
below, which provides for the correct normalization.

The spatial component is the distance between the distribution of
the posterior of the site position in a sequence (including the ‘null’
position) given the known set of sites and the prior distribution of the
site position.

Ispatial =
∑

R⊂{sequences}

LR−s+1∑
k=0

P([k]R|R, q, f ) log2

(
P([k]R|R, q, f )

P ([k]R)

)

=
∑

R⊂{sequences}
− log2 P(R|q,f ) + 1

P(R|q,f )

LR−s+1∑
k=0

P(R|[k]R, q, f ) × P([k]R) × log2 P(R|[k]R, q, f )

(10)

where [k]R denotes the event that a site is observed in position k of
sequence R, LR is the sequence length, and q and f are the same as
in Equation (5).

Finally, the value of ICP equals

(
Ispatial + Istruct

s · M

)
, (11)

where s and M are the same as in Equations (1)–(4).
In fact, it is sufficient to maximize Istruct to find a best set among

all shifts, although the spatial component is necessary to estimate
the optimal motif length. Indeed, the structural component itself
(e.g. the motif probability matrix information content) is not suitable
as a value to be optimized with the motif length because it grows
monotonically with the length. On the other hand, if the structural
component is normalized for the motif length, the maximal value is
attained at a single best position, creating a motif with length 1.

Thus, at every adjustment step, we take the motif for which the
maximal ICP is attained in the preceding sampling chain and then
vary the site length and the absolute position of the entire set as a
whole in order to optimize the value of ICP as given by Equation (11).
For spaced motifs at this stage we also estimate the length of the

spacer separating two boxes of the same length; the background
probabilistic model is adopted for the spacer. For each adjustment
procedure, that is the cooperative shift of sites, the optimal spacer
length is selected, which gives the (local) maximum of the ICP
[Equation (11)].

This adjustment procedure is similar to the one described in
Lawrence et al. (1993) with the following differences. The inform-
ation content calculation [Equation (11)] has an improved spatial
component. The adjustment stage is also used to evaluate the site
length and the length of spacer, if spaced motifs are allowed. For
every site length, the spacer length is chosen as the minimal value for
which the local maximum for the ICP is attained. Since the spacer
length can be zero, this procedure in effect is used to determine
whether the motif is spaced.

4 IMPLEMENTATION
The SeSiMCMC software is written in C++ (gcc 3.x). Executable
files for FreeBSD and Windows 32 console are available from the
project site http://bioinform.genetika.ru/SeSiMCMC. This web page
contains the program documentation describing the command line
and the configuration file control interfaces. Also at this page one can
find the web-based version of the program with input forms. Below,
we describe the simple input form, which is used in the interface,
from the user’s viewpoint. The advanced form allows the user to
control many program parameters, which are described in the docu-
mentation. All parameters except the obligatory input sequence data
are originally set to their default values.

The sequence input data in the FastA format can be copied directly
to the text window or submitted as a file from the user’s computer.
Each running task has its own unique identifier, allowing users to
obtain the results of earlier computations, and the results are saved
on the host computer for at least one month. There are several fields
allowing the user to select the motif geometry and to set a priori
information about the motif, i.e. the expected range of lengths as
well as a reasonable length seed value. The expected fraction of
sequence fragments that do not contain a site is also supplied in
the ‘motif absence prior’ field. In addition, this parameter expresses
the preference about the desired motif: an abundant weak motif or a
strong, but rare one. The lower the parameter, the greater the attention
paid to the motif population (i.e. abundant motifs).

Two protocols for the motif and spacer length optimization can
be used. The default ‘fast’ mode performs the optimization at the
stage of local alignment adjustment, as described above. In the
‘slow mode’, the motif length is changed stepwise and the full
sampling procedure without the adjustment is executed at every step.
The latter variation is similar to that described in Lawrence et al.
(1993) and is rather slow. The final output of the slow mode contains
results for each motif length with the motif geometry optimal for
that length. Thus in the slow mode the user obtains more informa-
tion about the possible motifs. Obviously, the ICP, maximized over
all motif lengths provided by the algorithm working in the slow mode,
can be greater than that obtained by maximization in the fast mode,
where the motif geometry, i.e. the motif length and the spacer, are
obtained simultaneously with the motif.

At the computational stage, the algorithm assumes that there is
at most one site per sequence fragment. At the output stage, the
program scans all sequences with the final positional probability
matrix q(i, r) and extracts all sites with a probability higher than
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that of the least probable site identified at the computational stage
in any sequence. This post-processing procedure is optional, and if
this option is not selected, only the best local alignment is output.
If this post-processing retrieves too many sites, it indicates that the
site with the lowest probability fits the motif poorly. In this case it
is advisable to repeat the calculations with an increased prior for the
absence of a site. It is also possible to ask the program to set the
threshold for the retrieved sites at the i-th lowest probability score
of the initially identified sites. Like other tools (Thijs et al., 2002),
the software can search for multiple motifs by restarting the process
on the input data after masking the previously identified motif sites.
There is a flag in the web form that requests such a masked output
for further motif searches.

5 RESULTS
To test the performance of the algorithm we studied two factors whose
binding sites are notoriously divergent and difficult for computer
identification, ArcA and NarP, both of which are involved in the
regulation of respiration. There are indications that binding signals
of these proteins exhibit a symmetric structure. Experiments showed
that the NarP signal might be palindromic (Darwin et al., 1997),
whereas the ArcA signal was reported to be found in some regulatory
regions with several copies on the same strand (McGuire et al., 1999;
Liu and De Wulf, 2004), which yields the possibility that it is a
direct repeat. It is important that these regulatory systems are vital
for bacterial respiration and thus are well studied experimentally
(Darwin et al., 1997; McGuire et al., 1999; Liu and De Wulf, 2004).

In both cases we combined the motif identification proced-
ure with comparative genomic studies, analyzing sites found in
the regions upstream of orthologous genes from several related
genomes (see Gelfand et al., 2000 for a detailed review of
the procedure). The parameters used for the motif search by
SeSiMCMC are available as examples of the program runs at
http://bioinform.genetika.ru/SeSiMCMC. All comparative genom-
ics analyses were performed using the GenomeExplorer software
tool (Mironov et al., 2000).

5.1 Phospho-ArcA
The Arc cascade regulates gene expression in response to
aerobic/anaerobic environment changes. The cascade consists of the
membrane-associated sensor kinase ArcB and the regulatory pro-
tein ArcA. When the cell lacks oxygen, ArcB phosphorylates itself
and then catalyzes ArcA phosphorylation. In turn, phospho-ArcA
(ArcA-P) represses some operons (e.g. icd, lld, glt, glc, sdh and
sodA) and activates some others (e.g. cyd and pfl) (Lynch and Lin,
1996). Currently, there are about a dozen of operons that are known
to be regulated by ArcA-P, although there are recent indications
that ArcA-P regulation may be even more important with hundreds
of genes involved directly and indirectly (Liu and De Wulf, 2004).
Thus, identification of candidate ArcA binding sites is important for
understanding bacterial metabolism.

We started with a set of regions upstream of E.coli genes, for
which ArcA regulation was verified by various experimental tech-
niques (Supplementary Table 1). SeSiMCMC was run for this set
of sequence fragments using all possible parameter combinations,
searching for: (1) an isolated motif, (2) a spaced generic motif, (3)
a spaced direct repeat and (4) a spaced inverse complement repeat
(a palindrome). The motif could be located on any DNA strand and

Fig. 1. ArcA regulatory motif variations. Horizontal axis, position in
the signal; vertical axis, information content in bits. The height of each
stack of letters is proportional to the positional information content in
the given position; the height of each individual letter reflects its preval-
ence in the given position. The logos were created by WebLogo (Crooks
et al., 2004; Schneider and Stephens, 1990; http://weblogo.berkeley.edu/).
(a) The motif obtained from the alignment of sites identified by SeSiM-
CMC. (b) Logo for the motif from (McGuire et al., 1999) (according to
http://arep.med.harvard.edu/ecoli_matrices/dat/arcA.dat).

its length could be from 6 to 22 bases. The best motif found had a
structure of a spaced tandem repeat (Fig. 1). This 15 nt motif is better
conserved and has more informative positions than the ArcA motif
reported in McGuire et al. (1999). We believe that the refinement is a
result of the defined structure of the motif. When a single-box motif
is searched, a box with a stronger core is selected from two boxes
of a double-box motif in the sequence. In so doing, the irrelevant
positions flanking the cores of different boxes sometimes become
aligned. In our case these positions were consistently assigned to the
flanking positions or to the spacer, which allowed us to locate the
core positions more precisely.

The greater selectivity of the identified motif allowed us to use it
in comparative genomic studies. The resulting set of sites was used
to create a recognition profile (a variant of positional-weight matrix,
Mironov et al., 1999). All sites for which that profile scored better
than the worst site found by SeSiMCMC were accepted. With this
rule at hand we scanned upstream regions of all orthologous genes
of four gamma-proteobacteria: E.coli, Yersinia pestis, Pasteurela
multocida and Vibrio vulnificus. Genes with the candidate site present
in the regions upstream of an E.coli gene and at least one of its
orthologs were selected as putative members of the ArcA-P regulon.
As a result, we discovered a number of new genes putatively regulated
by ArcA-P in E.coli and the other three gamma-proteobacteria, the
majority of which had been reported in the literature as relevant to
respiratory regulation (Supplementary Table 2) (Gerasimova et al.,
2004).

5.2 NarP
The NarP regulatory system operates in anaerobic conditions. Nitrate
and nitrite are the most efficient electron acceptors in this case.
E.coli possesses a complex regulatory system for close monitoring of
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Fig. 2. Sequence logo for the NarP binding site. Horizontal axis, position
in the signal; vertical axis, information content in bits. The height of each
stack of letters is proportional to the positional information content in the
given position; the height of each individual letter reflects its prevalence in
the given position. The logos were created by WebLogo (Crooks et al., 2004;
Schneider and Stephens, 1990; http://weblogo.berkeley.edu/).

and response to nitrate/nitrite concentration changes in the environ-
ment, which includes NarL and NarP transcription regulatory factors.
These factors are activated by sensor kinases NarQ and NarX. In their
active form NarL and NarP activate transcription of operons respons-
ible for the nitrate/nitrite respiration (narGHI, narK, nap, nir and
nrf ) and operons coding for some respiratory dehydrogenases (nuo,
hya and fdnGHI). They repress transcription of operons responsible
for other forms of anaerobic respiration (dms, focA-pflB, torCAD,
dcuB-fumB and frd).

NarP is believed to recognize a 16-nt palindromic site with the
consensus TACYYMT-2-AKRRGTA (Darwin et al., 1997; Maris
et al., 2002), whereas it is still unclear what the recognition site of
NarL is; presumably this site also contains the TACYYMT boxes in
different combinations (Darwin et al., 1997).

The training set included 16 regions upstream of E.coli operons,
for which the NarP regulation was shown by different experimental
methods (Supplementary Table 3). SeSiMCMC was run for this set
using different parameter combinations, similar to the ArcA case
above. The identification of the NarP binding motif proved to be a
more difficult task than the identification of motifs for ArcA. The
motif was found only when the inverse repeated (palindromic) struc-
ture was specified and the length of a candidate motif could vary
between 10 and 20 nt with the starting length 16 (which is equal to
the reported motif length). The prior for the absence of the motif
in a sequence was evaluated as 0.5. In this case the motif with a
characteristic NarP consensus was identified (Fig. 2).

Again, the obtained set of sites was used to create a recognition
profile (Mironov et al., 1999). We selected the maximal profile cutoff
value of 3.50, for which at least one NarP site was found in each
sequence from the training set. We used comparative genomics to
verify the signal and to find other candidate members of the NarP
regulon in the four genomes (Supplementary Table 4).

Candidate NarP sites were found in other genomes upstream of
most genes in the training set. In particular, we predicted NarP reg-
ulation for five operons from the training set (narK, narG, dmsA,
adhE and torC) for which only NarL regulation had been shown.

Candidate NarP sites were also found for five new operons (nirB,
dcuB, ynfE, moaA and narXL), three of which were previously repor-
ted as nitrate- or nitrite-regulated. Regulation of narX by NarP was
experimentally demonstrated in E.coli (beta-galactosidase assays,
Darwin and Stewart, 1995); and thus this site is probably functional

despite the fact that no site was found upstream of narX in genomes
other than E.coli. No candidate NarP sites were found upstream of
narQ and narP in genomes other than V.vulnificus, where these two
genes form an operon. This may indicate auto-regulation of NarPQ
expression in V.vulnificus.

Other results of this study will be described in detail elsewhere. In
brief, we have demonstrated conservation of the identified NarP sites
and found several new conserved sites, thus identifying new members
of the regulon. These members are fdoG (formate dehydrogenase
isoenzyme) in Y.pestis and P.multocida, nqr (NADH-dehydrogenase)
in Y.pestis and P.multocida, and moaABCDE (synthesis of molyb-
denum cofactor). Finally, candidate NarP sites were observed
upstream of two homologous operons ynfEFGHI and dmsABC that
encode dimethyl sulfoxide reductase in E.coli. These operons have
no orthologs in other gamma-proteobacteria.

6 DISCUSSION AND CONCLUSIONS
All in all, SeSiMCMC is a tool for multiple local alignment of a
set of DNA sequence fragments that is based on a modification of
the Gibbs sampling algorithm (Lawrence et al., 1993). Our primary
objective was to create a computationally efficient tool that uses user-
defined motif symmetry and evaluates the motif length from the data.
Sequence fragments in the training set can have arbitrary orientation,
and there is a probability for a sequence to contain no sites.

In the recent assessment of different motif predictors by identific-
ation of binding sites in eukaryotic genomes (Tompa et al., 2005),
SeSiMCMC, as a specialized tool, demonstrated a moderate per-
formance over the general dataset, but was the best at Drosophila fly
data and was among the 3 programs that gave positive results on this
dataset out of 13.

SeSiMCMC testing on sets of bacterial regulatory regions, known
to be difficult for signal identification with computational tools,
allowed us to refine the binding motif for the global respiration reg-
ulator ArcA and demonstrate that it has a structure of a direct repeat.
We also obtained the motif for the NarP regulator. This motif had the
structure of an inverse complement repeat, a palindrome. The con-
served signals were validated by means of comparative genomics,
and a number of new members of the ArcA and the NarP regulons
where identified. This in turn should lead to a better understanding
of the important process of bacterial respiration.

The dramatic progress in experimental identification of transcrip-
tion factor binding sites is now obvious. In this connection it is
noteworthy that recent experiments on genome-wide cross-linking of
transcription factor proteins to DNA in yeast (Harbison et al., 2004)
included additional examination of the experimental results with site
prediction tools, which allowed the authors to exclude experimental
false positives. This important study also demonstrated the variety
of patterns in the arrangement of transcription factor binding sites
within regulatory regions in yeasts. A number of examples of site
sequences for recurrent pairs of regulators, as well as multiple copies
of the same binding signal with fixed or preferential spacing between
site occurrences were observed. Thus, it is likely that the next gen-
eration of tools for signal identification would focus on programs
predicting not individual sites but rather site combinations or more
complex site arrangements (Li et al., 2002). SeSiMCMC provides
only a limited step in this direction. It can be used to search for com-
binations of two different sites separated by a fixed spacer (when
executed with the motif symmetry not specified) or for combinations
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of two identical sites located on the same (direct repeat) or different
DNA strands.

We are, however, fully aware that it is not yet sufficient even in
bacterial studies for recovery of the regulatory region structure. In
eukaryotes the site arrangements become very complex, including
overlapping sites and sites with periodic positioning (Kel-Margoulis
et al., 2002; Makeev et al., 2003; Frith et al., 2003; Qiu et al., 2003).

Another important area of application is the analysis of mass gene-
expression data, e.g. in microarray experiments. Such experiments
usually identify many genes with indirect regulation. In this case the
option of an explicit prior allowing the absence of a motif is likely
to be very useful.
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