
Mikhail Baytaluk

is a PhD student at the Institute

of Molecular Biology, RAS. His

research is in the area of gene

recognition.

Mikhail Gelfand

is Director for Science,

Integrated Genomics, Moscow.

His research interests are

comparative genomics, genome

annotation, analysis of

regulation of gene expression

and gene recognition.

Andrey Mironov

is Director for Technology,

Integrated Genomics, Moscow.

His research interests are the

creation of algorithms for

sequence and structure

alignments, software

development and genome

annotation

Keywords: gene, genomics,
gene recognition, reading
frame, start of translation,
computer analysis,
prokaryotes

M. S. Gelfand,

Integrated Genomics – Moscow,

PO Box 348,

Moscow 117333,

Russia

Tel: +7 (095) 135 20 41

Fax: +7 (095) 132 60 80

E-mail:

gelfand@integratedgenomics.ru

Exact mapping of prokaryotic
gene starts
Mikhail V. Baytaluk, Mikhail S. Gelfand and Andrey A. Mironov
Date received (in revised form): 30th April 2002

Abstract
It is known that while the programs used to find genes in prokaryotic genomes reliably map

protein-coding regions, they often fail in the exact determination of gene starts. This problem

is further aggravated by sequencing errors, most notably insertions and deletions leading to

frame-shifts. Therefore, the exact mapping of gene starts and identification of frame-shifts are

important problems of the computer-assisted functional analysis of newly sequenced genomes.

Here we review methods of gene recognition and describe a new algorithm for correction of

gene starts and identification of frame-shifts in prokaryotic genomes. The algorithm is based on

the comparison of nucleotide and protein sequences of homologous genes from related

organisms, using the assumption that the rate of evolutionary changes in protein-coding

regions is lower than that in non-coding regions. A dynamic programming algorithm is used to

align protein sequences obtained by formal translation of genomic nucleotide sequences. The

possibility of frame-shifts is taken into account. The algorithm was tested on several groups of

related organisms: gamma-proteobacteria, the Bacillus/Clostridium group, and three Pyrococcus

genomes. The testing demonstrated that, dependent on a genome, 1–10 per cent of genes

have incorrect starts or contain frame-shifts. The algorithm is implemented in the program

package Orthologator-GeneCorrector.

INTRODUCTION
Recent advances in sequencing of

complete genomes, growth of data

deposited in sequence databases, and

development of computer programs for

the large-scale similarity analysis make it

possible to design more accurate tools

for gene recognition. Systematic analysis

of the performance of available software

for gene recognition highlighted that

while the current programs perform well

at identifying genes (as opposed to

random open reading frames, ORFs),

gene starts are predicted with lower

accuracy.

Although for many purposes the

approximate location of gene starts, eg

using ‘the leftmost ATG’ rule, is

sufficient, it still creates some problems,

leading to proliferation of annotation

errors, complicating genomic analyses that

depend on intergenic distances, eg

prediction of the operon structure,1

making it impossible to predict secreted

proteins via analysis of signal peptides,2

and obstructing analysis of translational

regulation.3

An additional problem complicating

gene recognition arises from frame-shifts

that interrupt reading frames. Although

there exist many biologically meaningful

frame-shifts4 or frame-shifts that indicate

non-functional pseudogenes (an extreme

case is the degenerating genome of

Mycobacterium leprae5), at least some of

them may be caused by sequencing

errors. Thus it is desirable to have an

algorithm for gene recognition that

would not be confused by frame-shifts.

Indeed, even if a frame-shift were real, it

still would be useful to know the original

amino acid sequence of the encoded

protein.

The following features are important

for gene recognition: (1) ORF length; (2)

presence of a ribosome binding site (RBS)

upstream of the start codon; (3) specific

pattern of codon usage that is different

from triplet frequencies in non-coding

regions (‘coding potential’), as well as
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other similar statistical parameters; and (4)

similarity to known genes.

Intrinsic, or ab initio, approaches use the

first three types of data. Hidden Markov

models (HMM) provide a convenient

language for integrating these diverse

parameters of candidate genes in genomic

sequences. Extrinsic methods rely on the

comparative analysis of genomic DNA

sequences using alignment with known

genes and proteins.

Ribosome binding sites are located in

the (�20) . . . (�1) region upstream of

start codons and serve to direct ribosomes

to the correct translation start position. A

part of RBS is formed by the purine-rich

Shine–Dalgarno (SD) sequence, which is

complementary to the 39 end of the 16S

rRNA.6 A number of early papers

described methods for recognition of

ribosome binding sites using statistical,

pattern recognition or neural network

modelling of experimentally mapped

sites.7–10

There are two approaches to the

recognition of ribosome binding sites in

the absence of a learning sample. One

possibility is to rely on the universal

mechanisms of RBS recognition via base-

pairing of the SD box and the 39-terminus

of the 16S rRNA.6 It was used to predict

RBSs in Escherichia coli by calculation of

the optimal binding energy between the

16S rRNA of E. coli and the region

upstream of a potential start codon.11 It

turned out that the reliability of this

approach in E. coli is rather low, as the

RBS pattern is weak. However, in

clostridial Gram-positive bacteria, in

particular Bacillus subtilis and Staphylococcus

aureus, the average energy at potential

RBSs tends to be much stronger. Base-

pairing of the SD box and the 39-terminus

of the 16S rRNA was used to predict

RBSs in B. subtilis, E. coli and Pyrococcus

furiosus.12 Beside the RBS binding energy,

Hannenhalli et al.12 took into account

additional information: the distance

between the RBS and the start codon, the

distance from the beginning of the

maximal ORF to the start codon, the start

codon itself (ATG, GTG or TTG) and

the coding/non-coding statistics around

the start site.

The other possibility is to derive a

‘pseudo-learning’ sample of candidate

translation initiation sites using protein-

coding regions predicted by database

search or statistical analysis. In the

GeneMark system this sample consists of

ATG codons at the 59-ends of statistically

predicted protein-coding regions.13,14 For

prediction, GeneMark uses the start

codon score, the SD box score, the

downstream box score, pre-start signal

score and post-start signal score, all based

on similarity to profiles generated from a

training set. Similar ideas are implemented

in RBS-Finder, a post-processing tool for

GLIMMER 2.0, that finds RBSs

upstream of start codons.15

ORPHEUS uses the similarity analysis

to identify genes with only one candidate

start codon, and then uses these genes to

derive the recognition rule for gene

starts.16 The RBS site score is defined as

the sum of the SD box score and the

weight of the distance between the SD

box and the start codon.

Gene recognition algorithms relying on

the codon usage explore the idea that the

codon choice is genome-specific.17

Eighteen amino acids (not methionine

and tryptophan) are encoded by two to

six codons. The codon usage (the

combined result of the amino acid usage

and the synonymous codons usage) varies

both between organisms and between

different genes in the same organism.

Indeed, the codon usage reflects the

expression level of bacterial genes18–21 and

the history of lateral gene transfer.22 Still,

the statistical patterns in protein-coding

regions (the codon usage, correlations

between adjacent codons, etc.) are

sufficiently strong to distinguish genes

from random ORFs (for a review see

Fickett and Tung23).

A convenient technique for integration

of diverse parameters is the HMM.

HMM24 is a Markov chain of hidden

states. Each state is assigned a distribution

of emission probabilities (Bernoulli or

Markov) that generate the observed

Intrinsic approach to
gene recognition

Ribosome binding sites

Codon usage

Integration: hidden
Markov models
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nucleotide sequence. The aim is, given a

nucleotide sequence, to reconstruct the

most probable sequence of hidden states,

each corresponding to a functional state:

protein-coding, non-coding intergenic,

SD box, etc. This is done using a variant

of the standard dynamic programming.

One of the most popular ab initio

programs is GeneMark.25 It uses non-

homogeneous Markov models to describe

coding sequences and ordinary Markov

models for non-coding sequences. For

analysis of a newly sequenced genome,

parameters of the Markov models are

estimated from a set of ORFs longer then

1,000 nucleotides. As an initial model for

non-coding sequences, a zero-order

Markov model with genome-specific

nucleotide frequencies is used. The initial

models are used at the first prediction

step. The results of the first prediction are

then used to compile a set of putative

genes used at the second training step.

The training and prediction steps are

iterated until the set of predicted genes

stabilises. Recently this algorithm was re-

formulated using the language of hidden

Markov models and extended to take into

account information about candidate

ribosome binding sites.26

Another very popular gene recognition

program, GLIMMER, relies on

interpolated Markov models to take into

account DNA oligomers of varying

length, thus using all available data

without over-training.27 The gene start is

assigned, by default, to the start codon of

the longest ORF containing the predicted

coding region. Then the program

computes the maximum value of the

hybridisation energy between the anti-SD

segment in the 16S rRNA and the

fragments upstream of putative start

codons. If there are candidate starts where

this value exceeds some threshold, the

start with the highest scoring putative SD

box is accepted. In a later version,

GLIMMER 2.0, the sensitivity of the

method was increased by resolution of

overlapping genes and improvement of

the probabilistic model.28

One more program, EcoParse, also

finds the maximum likelihood parse of a

DNA sequence into coding and non-

coding regions using the hidden Markov

model technique.8

Extrinsic analysis involves sequence

similarity searches. Candidate gene

products are searched against protein

sequence databanks. BLASTX, the most

popular program of this class, performs

six-frame translation of the query DNA

and compares the resulting amino acid

sequences to known proteins.19 In the

pre-genome era, BLASTX was used to

detect several hundreds of new bacterial

genes missed in original publications and

GenBank submissions.29

The simplest way to combine the

extrinsic and intrinsic approaches is to

apply them in parallel.30 The complete

genome sequence of Bacillus subtilis was

screened by combination of two

independent analyses by BLASTX and

proFED (prokaryotic frame-shift error

detection).31 The ProFED program uses

the predicted coding probabilities in the

six reading frames computed by

GeneMark and GLIMMER, and then

attempts to reconcile overlapping or

adjacent high-quality reading frames by

incorporation of frame-shifts.

ORPHEUS utilises non-supervised

training based on sequence similarity

searches.16 The analysis starts with

database similarity search and

identification of gene fragments having

known reliable homologues. These

fragments are used to derive the codon

usage statistics and to construct the RBS

scoring matrix (see above). At the

prediction step, the 59-proximal codon

with sufficiently strong RBS is accepted.

Unlike GeneMark and EcoParse,

ORPHEUS does not rely on statistics of

non-coding regions. The motivation is

that only coding regions can be defined

unambiguously, especially at the initial

steps of the analysis.

Another gene recognition program

with emphasis on accurate mapping of

gene starts is CRITICA.32 It uses

BLASTN33 at the initial stage to locate

sequences in DNA database that are

Extrinsic approaches

Combined techniques
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highly similar to the query. If

conservation of the amino acid sequence

is stronger than expected given the level

of conservation of the nucleotide

sequence, the ORF is assumed to be

coding. Similar reasoning is used to

choose the correct start codon.

Even this brief review shows that the

distinction between intrinsic and extrinsic

methods is somewhat blurred and the

most successful algorithms incorporate

both approaches. In practice, putative

coding regions identified by intrinsic

methods are verified by similarity

searches, to get support for the predicted

protein. Length corrections, based on

comparison with known proteins, were

made in several dozens of GeneMark-

predicted ORFs in the Haemophilus

influenzae, Methanococcus jannashii and

Mycoplasma genitalium genomes.34 Tables 1

and 2 list gene recognition programs used

to annotate complete prokaryotic

genomes.

Benchmarking of gene recognition

software is a difficult problem, since only

a few genomes have been characterised

experimentally to a sufficient extent. In

one such study38 it was shown that the

fraction of correctly identified gene starts

is highly correlated with the information

content of the SD box signal.

We now turn to a description of an

algorithm for correction of gene starts and

frame-shifts in prokaryotic genomic

sequences.

MATERIALS AND
METHODS
The prediction is done in three steps:

• Building the tables of orthologues.

• Applying a dynamic programming

algorithm to align pairs of orthologous

genes.

• Filtering of results and identification of

suspicious gene starts and possible

frame-shifts.

The data flow is presented in Figure 1.

The output of step 3 is evaluated before

the final decision about correction of

errors is made.

Data
The algorithm was tested on three groups

of genomes:

• Escherichia coli,39 Vibrio cholerae,40

Haemophilius influenzae,41 Buchnera sp.,42

Xylella fastidiosa; 43

• Bacillus subtilis,44 Bacillus halodurans,45

Clostridium acetobutylicum;46

• Pyrococcus horikoshii,47 Pyrococcus abyssi,48

Pyrococcus furiosus.49

Additionally, the following complete

and incomplete genomes of gamma-

proteobacteria were considered:

Salmonella enterica, S. enteritidis, S.

paratyphi, S. typhi, S. typhimurium,

Klebsiella oxytoca, K. pneumoniae, Yersinia

enterocolitica, Y. pseudotuberculosis,

Haemophilus ducreyi, Pasteurella haemolytica,

P. multocida, Pseudomonas fluorescens, Ps.

putida, Ps. stutzeri, Ps. syringae, Ps.

aeruginosa, Vibrio anguillarum, V.

parahaemolyticus, Xylella almond, X.

oleander, Erwinia carotovora, Er. amylovora,

Er. chrysanthemi, Er. herbicola, Buchnera

aphidicola, Enterobacter aerogenes, En. cloacae,

Shigella flexneri, Sh. sonnei, Proteus mirabilis.

Building the orthologue tables
This is the least specific part of the

algorithm: a pre-computed table

produced by any external tool can be

used. However we describe this step for

the sake of completeness.

Although careful analysis of

orthologues requires construction of a

large number of phylogenetic trees, a

reasonable approximation of orthology

relationships in our case (closely related

genomes) comes from best bidirectional

hits (BETs);50 cf. the COG (cluster of

orthologous genes) system.51

Two genes, g from genome A and h

from genome B, form a BET if the

similarity between these genes s(g,h)
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exceeds the similarity for any other choice

of either member of the pair: s(g, h) .

s(x, h) and s(g, h) . s(g, y) for every

x 6¼ g from genome A and y 6¼ h from B.

For every gene in the basic genome

(BG) to be corrected, the program

identifies an orthologue in another

(additional) genome (AG) from the same

taxonomic group. The gene pairs are

formed using BLASTP.52 The statistical

significance of similarity between a and b

(E-value) must be less than 10�6. Thus we

obtain the table of orthologues for

genomes BG and AG. The procedure is

done for all additional genomes AGi from

the same taxonomic group.

The number of thus determined

orthologue pairs depends on the degree of

relatedness and the size of the compared

genomes. For instance, the number of

orthologue pairs for E. coli and V. cholerae

was 2,300, whereas for E. coli and H.

influenzae it was only 1,400.

The orthologue tables were

constructed using the program

ORTHOLOGATOR, which is a part of

the created software package.53 Processing

of one pair of genomes requires

approximately one hour (on a PC with

Intel Pentium III, 650 MHz, RAM

128 M configuration), dependent on the

size of genomes.

A dynamic programming
algorithm for alignment of
gene starts
Consider a pair of orthologous genes.

Extend them by n1, n2 nucleotides at the

left and m1, m2 nucleotides at the right

Table 1: Genomes and gene recognition programs

Organism Gene recognition algorithm

Aquifex aeolicus CRITICA and similarity
Archaeglobus fulgidus GeneSmith and CRITICA
Bacillus halodurans GeneHacker Plus
Bacillus subtilis GeneMark
Borrelia burgdorferi GLIMMER
Buchnera sp. GeneHacker Plus
Campylobacter jejuni NCTC 11168 ORPHEUS and GLIMMER
Caulobacter crescentus GLIMMER
Chlamidia pneumoniae AR39 GLIMMER
Chlamidia trachomatis MoPn Nigg GLIMMER
Clostridium acetobutylicum ORFs(Uniorf)
Clostridium perfringens GeneHacker Plus
Cyanobacterium anabaena GLIMMER
Deinococcus radiodurans R1 GLIMMER
Escherichia coli GeneMark
Escherichia coli O157:H7 GeneHacker Plus
Halobacterium sp. NRC-1 GLIMMER
Helicobacter pylori GeneMark and GeneSmith
Methanococcus jannaschii GeneMark
Mycobacterium tuberculosis TbParse
Mycoplasma genitalium GeneMark
Mycoplasma pneumoniae Frames
Mycoplasma pulmonis GLIMMER
Neisseria meningitidis Z2491 (serogroup A) GLIMMER
Pasteurella multocida Pm70 ORPHEUS and GLIMMER
Pseudomonas aeruginosa GeneMark
Pyrococcus abyssi ORFs and similarity
Pyrococcus horikoshii ORFs and similarity
Ralstonia solanacearum FrameD
Rickettsia prowazekii ORFs(BioWish)
Salmonella enterica GeneMark and GLIMMER
Sinorhizobium meliloti GLIMMER and FrameD
Staphylococcus aureus GLIMMER
Streptococcus pneumoniae TIGR4 GLIMMER
Streptococcus pyogenes GLIMMER
Sulfolobus solfataricus P2 GLIMMER
Synechocystis sp. PCC6803 GeneMark
Termotoga maritime GLIMMER
Thermoplasma acidophilum ORPHEUS
Thermotoga maritima GLIMMER
Treponema pallidum GLIMMER
Ureaplasma urealiticum GeneMark and GLIMMER
Vibrio cholerae GLIMMER
Xylella fastidiosa GLIMMER2.0 and RBSfinder
Yersinia pestis GLIMMER

Table 2: Gene prediction methods

Gene prediction method URL Ref.

GeneMark http://www.opal.biology.gatech.edu/GeneMark/ 25
GLIMMER http://www.tigr.org/softlab/glimmer/glimmer.html 27
EcoParse, TbParse http://www.cbs.dtu.dk/krogh/EcoParse.info 35
GeneSmith Unpublished H. O. Smith
ORPHEUS http://pedant.mips.biochem.mpg.de/orpheus 16
GeneHacker Plus http://www.elmo.ims.u-tokyo.ac.jp/GH/ 36
FrameD http://www.toulouse.inra.fr/FrameD.html 37
CRITICA ftp://rdp.life.uiuc.edu/pub/critica

http://rdpwww.life.uiuc.edu
32

& HENRY STEWART PUBLICATIONS 1477-4054. B R I E F I N G S I N B I O I N F O R M A T I CS . VOL 3. NO 2. 181–194. JUNE 2002 1 8 5

Exact mapping of prokaryotic gene starts



(the maximum extension length at each

end is 200 nucleotides). Overlaps with

adjacent genes translated in the same

direction are excluded (Figure 2).

In a pair of extended sequences, all

potential starts (ATG, TTG, GTG) and

stops (TGA, TAA, TAG) around gene

starts ([s1 � n1, s1 þ n1] for the first gene,

[s2 � n2, s2 þ n2] for the second gene)

and ends ([e1 � m1, e1 þ m1] for the first

gene, [e2 � m2, e2 þ m2] for the second

gene) are marked. For two nucleotide

sequences [s1 � n1, e1 þ m1] and [sv � nv,

e2 þ m2] a variant dynamic programming

algorithm similar to the Smith–Waterman

local alignment procedure54 is used to

align the protein sequences generated by

the formal translation of the nucleotide

sequences in all three reading frames, with

account to possible frame-shifts.

Figure 1: GeneCorrector data flow. Base genomes: E. coli, V. cholerae, B. subtilis, P. horikoshii. Additional genomes: H.
influenzae, Buchnera sp., X. fastidiosa; B. halodurans, C. acetobutylicum; P. abyssi, P. furiosus
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The recursions for the alignment are:

Si, j ¼ max

Si�3, j�3 þ d(xi, yj)

Qi, j

Ri, j

Si�2, j þ f

Si�1, j þ f

Si, j�2 þ f

Si, j�1 þ f

8>>>>>>>>><
>>>>>>>>>:

where:

Qi, j ¼ max
Si, j�3 þ a

Qi, j�3 þ b

�

Ri, j ¼ max
Si�3, j þ a

Ri�3, j þ b

�

Here Si, j is the score of the alignment at

point (xi, yj); d(xi, yj) is the weight of

matching two amino acids encoded by

codons (xi�2, xi�1, xi) and

(yj�2, yj�1, yj) codons; a is the deletion

initiation penalty; b is the deletion

extension penalty; f is the frame-shift

penalty.

The alignment graph, whose vertices

are the elements of the optimum distance

matrix, is shown in Figure 3. Filling of the

alignment matrix begins from the element

(0, 0) and terminates on the element

(l, n), where l and n are the lengths of the

extended nucleotide sequences.

Algorithm attempts to begin the

alignment at every pair of start codons and

to terminate at every pair of stop codons

in the areas around annotated start and

stop respectively. The alignment does not

proceed beyond points where the

similarity score falls below 0; in this case

the nearest already aligned pair of start or

stop codons is used. Thus this procedure

is similar to the Smith–Waterman local

alignment, although the fact that the

alignment can terminate only at selected

(though multiple) points resembles the

global alignment of the Needleman–

Wunsch type.

The traceback in the alignment matrix

initiates at the pair of stop codons having

the largest cumulative alignment score

among all potential stops. The traceback

terminates at the pair of start codons,

whose alignment score is the largest

among all pairs of potential starts. If thus

identified gene termini differ from the

annotated ones, the gene is retained for

further analysis.

The extensive testing showed that this

procedure is robust as regards the choice

of the amino acid substitution matrix

(PAM120, PAM60, PAM30 and

PAM1055). The deletion initiation

penalty was 10, the deletion extension

was 2; the frame-shift penalty was 20.

Figure 2: Expansion of
gene boundaries

s1-n1 s1 e1 e1+m1

s2-n2 e2+m2

s2 e2

                     - gene from the first genome

                                             -  ortholog from the second genome

                                             -  adjacent genes
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Filtering
At the filtering step possible explanations

for the observed differences between the

aligned and annotated gene termini are

considered. Three main types of non-

informative alignments have been

identified during preliminary testing

(Figure 4):

• Alignments that do not require

correction of gene coordinates (ie

confirm the existing annotation).

• Weak alignments not sufficient to

suggest revision: (a) for start correction,

if the relative similarity score of N-

terminal region (15 per cent of the

protein length) is smaller than 60 per

cent, (b) for frame-shifts, if the relative

similarity score of complete alignment

is smaller than 40 per cent.

• Alignments with multiple transitions

between the reading frames (clustered

frame-shifts closer than 21 nucleotides

to each other). This happens if reading

frames different from the correct one

encode rare amino acids with high

match weight.

The alignment and filtering procedures

are implemented in the program

GeneCorrector.

RESULTS
Table 3 presents the number of

alignments of each type for all considered

pairs of genomes and the number of

candidates for correction. For example,

for genomes E. coli and V. cholerae with

2,300 potential pairs of orthologues,

1,254 (�55 per cent) corroborate

annotation, 846 (�37 per cent) are weak

alignments and 149 (�7 per cent) are

alignments with multiple transitions

between reading frames. The remaining

56 genes (51 alignments) in both genomes

are candidates for correction of the

annotation or sequencing errors.

For the retained genes, verification

using a third genome was made. If

correction made by the comparison of the

BaseGenome (BG) with an additional

genome AGj was confirmed in the

Figure 3: Fragment of
the alignment graph with
all types of transitions.
Xi and Yi are
nucleotides: (1) from a
pair of amino acids
encoded by codons
(Xi�6, Xi�5, Xi�4) and
(Yi�6, Yi�5, Yi�4) into a
pair of amino acids
encoded by codons
(Xi�3, Xi�2, Xi�1) and
(Yi�3, Yi�2, Yi�1); (2)
frame shift; (3) deletion
of amino acids encoded
by codons
(Xi�3, Xi�2, Xi�1) or
(Yi�3, Yi�2, Yi�1)

Xi-3 Xi-2 Xi-1 Xi

Yi-3

Yi-2                     -

Yi-1          |

Yi

 1

  3

  2

  2
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comparison with one more additional

genome AGk, the new gene coordinates

were accepted as final (Figure 5). For this

purpose, genes from ‘base’ genomes (E.

coli, V. cholerae, B. subtilis and P. horikoshii)

were compared with orthologous genes

from additional genomes of the same

taxonomic groups (H. influenzae, Buchnera

sp. and X. fastidiosa for E. coli and V.

cholerae; B. halodurans and C. acetobutylicum

Table 3: Types of alignments obtained during testing

Pairs of organisms Number of
orthologous
pairs

Coincidence
with GenBank
annotation

Weak
alignments

Alignments
with multiple
transitions
between
reading frames

Candidates
for correction
(in both
genomes)

E. coli–V. cholerae 2,300 1,254 (55%) 846 (37%) 149 (7%) 56
E. coli–H. influenzae 1,400 849 (61%) 452 (32%) 69 (5%) 32
E. coli–Buchnera sp. 400 235 (62%) 133 (32%) 22 (5%) 12
E. coli–X. fastidiosa 1,600 972 (61%) 563 (34%) 45 (4%) 24
V. cholerae–H. influenzae 1,050 617 (60%) 323 (33%) 75 (6%) 38
V. cholerae–Buchnera sp. 280 186 (61%) 74 (34%) 11 (4%) 18
V. cholerae–X. fastidiosa 1,200 833 (62%) 388 (33%) 54 (4%) 27
B. subtilis–B. halodurans 2,700 1,604 (60%) 946 (35%) 205 (4%) 53
B. subtilis–C.
acetobutylicum

1,600 939 (58%) 577 (36%) 54 (5%) 33

P. horikoshii–P. abyssi 1,100 676 (62%) 353 (33%) 41 (4%) 38
P. horikoshii–P. furiosus 1,050 662 (63%) 333 (32%) 30 (4%) 31

Figure 4: Alignments
not leading to error
correction: (a) exact
coincidence with the
annotation; (b) too
distant genes; (c) and (d)
false frame shifts

   Query: MNIIAIMGPHGVFYKDEPIKELESALVAQGFQIIWPQNSVDLLKFIEHNPRICGVIFDWD
   ~      MNI AI+   GVF+K+EP+++L  AL   G+ ++ P +  DL K IE NPRICGV FDWD
   Sbjct: MNIFAILNHMGVFFKEEPVRQLHAALEKAGYDVVYPVDDKDLIKMIEMNPRICGVLFDWD

(a)

   Query: MT^EQRPLTIA_LVAGETSGDILGAGLIRALKEHVPNARFVGVAGPRMQAEG
   ~       T    P   A L   + S   L      A    V    +          E
   Sbjct: VTaHPPPVGRARLHPLQQSRHNLQESQREAAQCLVSSPWYL_LNLVNVISES

(b)

   Query: GRVRKSSLPNNATPKSPIDSg^IASSIVVACGPPPSDSTVAKLAKQSIKISAATGGIC
   ~      GRVRKS LPN A  KSPI+S  IASS VVA GPPPS  TVAKL KQSI    AT G C
   Sbjct: GRVRKSWLPNRAALKSPIES^gIASSMVVALGPPPSAITVAKLVKQSINTKPATCGSC

   Query: ^^IacGRLKNTWASKIPCRPQLa^CCSSRWRKFMMVVRSGKALSRDNRANRRMEAIS
   ~        I  G+L  TWASKIP +PQL  CCS +WRKFMMVVRSG ALS +  AN RM+AIS
   Sbjct: gcI^^GKLNSTWASKIPFKPQL^aCCSNKWRKFMMVVRSGMALSSERWANNRMDAIS

(c)

   Query: RMRFFKAFQQLQ^^^CLSLLG
   ~      RM  FK  QQL    C S  G
   Sbjct: RMLLFKLTQQL_taaCASFFG

(d)
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for B. subtilis; P. abyssi and P. furiosus for

P. horikoshii).

Figure 6 illustrates the major types of

errors, whereas Tables 4 and 5 presents

the summary data for studied genomes.

The majority of corrections in the

GenBank annotation, approximately 80

per cent (dependent of the genome), were

confirmed by the SWISS-PROT

databank,56 thus demonstrating high

accuracy of the obtained results.

In an additional study, a strong

dependency between the number of

suggested corrections and the number of

considered additional genomes was

observed. The same procedure was

applied to correction of E. coli genes using

32 complete or partial genomes of

gamma-proteobacteria. The results were

compared with 811 E. coli gene starts

verified by N-terminal protein

sequencing, extracted from the EcoGene

database57 (Table 6). This database

suggests start corrections in 77 genes. Of

these, 73 genes were identified by our

program as well, and the remaining 4

genes were missed, because no

orthologues were available for

comparison. GeneCorrector suggests

additional 395 start corrections, for which

no experimental data are available. In no

cases did GeneCorrector annotations

contradict experimental data. Finally, out

of 20 frame-shifts identified in the large-

scale comparison, 12 are mentioned in

EcoGene (only three frame-shifts were

corrected when 4 genomes were used).

DISCUSSION
The above algorithms provide

computational support for the gene

identification experiments. We have

tested the algorithm on three groups of

genomes and demonstrated high

reliability of predictions. Application of

the comparative approach leads to a

number of interesting observations. Three

types of genomic sequencing and

annotation errors were identified:

• Genes that had been sequenced and

annotated long ago and not revised ever

since. More accurate analysis showed in

some cases that gene starts had been

mapped incorrectly.

Figure 5: Correction
of gene start (hpt from E.
coli after comparison
with V. cholerae)
corroborated by the
third genome (Buchnera
sp.)

   Query=E.C.|hpt|b0125
   >V.C.|VC0585

   Query: MC^^DRHHNSSFINRttPRMNSFTGILRV^^LRFVAVPKPARAaSDLFLNHMVR^^DMKH
   ~      +            N+  +RM+  T I R   L  V +  P+++ + L   +  R   MKH
   Sbjct: LSttSACFIEWVHNK^^ARMSRET_INR_atLSEVVLYAPPKS^AILTSPNTTRatGMKH

   Query: TVEVMIPEAEIKARIAELGRQITERYKDSGSDMVLVGLLRGSFMFMADLCREVQVSHEVD
   ~      TVEVMI+E E+  RI ELG+QITE+Y  S SD+VLVGLLRGSF+FMADL R+++++H+VD
   Sbjct: TVEVMISEQEVAQRIRELGQQITEHYQGS_SDLVLVGLLRGSFVFMADLARQIHLTHQVD

   Query=E.C.|hpt|b0125
   >Buch.|hpt

   Query: Ma^IVLL^VYCVSCALLR^^CQ_NLP^^VRS__DLFLNHMVRDMKHTVEVMIPEAEIKAR
   ~      +  I+ + +Y ++C  L           V S  L   N ++  MKHT++V+I E E+  R
   Sbjct: L^tILEItIYSINCVFLItaILLYFFaaVFSYHLIHTNYLINIMKHTLQVIITEKELDIR

   Query: IAELGRQITERYKDSGSDMVLVGLLRGSFMFMADLCREVQVSHEVDFMTASSYGSGMSTT
   ~      + ELG++IT +Y++S + M+L++LLRGSF+F++DLCR +++ HE+DFMT+SSYG GM ++
   Sbjct: VRELGQEITKKYRNSRNKMILIALLRGSFIFISDLCRRIHIEHEIDFMTTSSYGRGMLSS
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Figure 6: Examples of
annotation errors: (a)
gene ilvD from E. coli –
frame-shift in and wrong
gene start in E. coli; (b)
gene yciO from E. coli –
wrong gene start; (c)
gene ribD from E. coli and
HIO944 – wrong starts
of both genes; (d)
hypothetical gene from
E. coli encoding a
transposase – frame-
shift and wrong gene end

a) Query=E.C.|ilvD|b3771
   >H.I.|HI0738

   Query: MPKYRSATTTHGRNMAGARALW_AcTGMTDADFGKPIIAVVNSFTQFVPGHVHLRDLGKL
   ~      MPK RSAT+T+GRNMAGARALW A TGM + DFGKPIIAVVNSFTQFVPGHVHL+D+G L
   Sbjct: MPKLRSATSTQGRNMAGARALWRA^TGMKENDFGKPIIAVVNSFTQFVPGHVHLKDMGQL

b) Query=E.C.|yciO|b1267
   >H.I.|HI1198

   Query: M^^GTAAEHHREGIMSQFFYIHPDNPQQRLINQAVEIVRKGGVIVYPTDSGYALGCKIED
   ~      +     A   R   MSQFFYIHP+NPQ RLINQAVEI  KGGVIVYPTDSGYALGC   D
   Sbjct: LctIISAHFLRKKHMSQFFYIHPENPQARLINQAVEILQKGGVIVYPTDSGYALGCMMGD

c) Query=E.C.|ribD|b0414
   >H.I.|HI0944

   Query: V_____QDEYYMARALKLAQRGRFTTHPNPNVGCVIVKDGEIVGEGYHQRAGEPHAEVHA
   ~            QD  +M RAL LA +G +TT PNP VGCV VK+GEIVGEG+H +AG+PHAE  A
   Sbjct: MLEFSSQDCVFMQRALDLAAKGQYTTTPNPSVGCVLVKNGEIVGEGFHFKAGQPHAERVA

d) Query=V.C.|VC0257
   >E.C.|b4285

   Query: LSPDSRLTGKALSMAYESRGKPKGVMFHS^^DQGSHYTSRKYRQLLWRFQIKQSLSRRGN
   ~       SPDSRLT KAL MA E+RGKP GVMF+   DQGSHYTSR +RQLLWR+ I+QS+SRRGN
   Sbjct: FSPDSRLTMKALEMAWETRGKPVGVMFQ_gcDQGSHYTSRQFRQLLWRYRIRQSMSRRGN

   Query: CWDNAPIERFFRSLKTEWVPTVGYRSFAEAQQEITRYIIGYYCQLRPHQYNGGLTPNESE
   ~      CWDN P ERFFRSLK EWVP  GYRSFAEA+QEITRYI+ YYCQLRPHQYN  +  NESE
   Sbjct: CWDNSPMERFFRSLKNEWVPATGYRSFAEARQEITRYILRYYCQLRPHQYNSPMERNESE

Query: RLYWENSKTVANFS
   ~      R  WEN   VAN
   Sbjct: RSPWENERFVAN__

  frame shift

Table 4: Corrected gene starts and frame-shifts in 14 completely sequenced microbal
genomes

Organism Date submitted Number of
genes

Corrected
starts

Frame-shifts

Escherichia coli 1997 4,288 22 (0.5%) 3
Vibrio cholerae 2000 2,736 28(1%) 5
Haemophilius influenzae 1995 1,709 15(1%) 2
Buchnera sp. 2000 564 10(2%) 5
Xylella fastidiosa 2000 2,766 5(0.01%) 2
Bacillus subtilis 1997 4,097 24(0.5%) 6
Bacillus halodurans 2000 4,066 21(0.5%) 8
Clostridium acetobutylicum 1997 3,740 22(0.5%) 5
Pyrococcus horikoshii 1998 2,058 24(1.5%) 8
Pyrococcus abyssi 2000 1,763 28(2%) 12
Pyrococcus furiosus 2000 2,208 28(1.5%) 7
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• Hypothetical genes for which there is

no experimental information. In such

cases, the comparison corrects the

results of the statistical annotation.

• Genes that have conflicting annotation

in different databases.

One of the expected, but still

important, results of this study was that

the number of corrected starts depends on

the number of considered exons. Indeed,

the number of corrections suggested for

E. coli grew from 25 to 468 when the

number of additional genomes rose from

4 to 32, and the comparison with

EcoGene makes it likely that most of

them are valid. On the other hand, the

number of missed cases decreased from 74

to only 4.

Of course, the suggested algorithm

does not cover all possibilities and also

does not take into account all available

features. However, given its simplicity

and computational flexibility, the

described algorithm can be easily linked

to other tools and incorporated into gene

recognition software for large-scale

genome annotation projects.
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