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a b s t r a c t

The ANA HEp-2 medical test is a powerful tool in autoimmune disease diagnostics. The last step of this
test, the interpretation of immunofluorescent images by trained experts, represents a potential source of
errors and could theoretically be replaced by automated methods. Here we present a fully automatic
method for recognition of types of immunofluorescent images produced by the ANA HEp-2 medical test.
The proposed method makes use of the difference in number, size, shape and localization of cell regions
that are targeted by the antinuclear antibodies – the humoral components of immune system that bind
human antigens as a result of the immune system malfunction. The method extracts morphological
properties of stained cell regions using a combination of thresholding-based and thresholding-less
approaches and applies a conventional machine-learning algorithm for image classification.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Many human autoimmune diseases are caused by a specific
failure of immune system, which leads to production of its soluble
components, antibodies, directed against self cells or tissues [1].
The antibodies of this type are referred to as autoantibodies [2].
Antinuclear antibodies (ANAs) [3] are a specific class of autoanti-
bodies that attack different proteins and DNA inside the cell
nucleus. The specificity of antinuclear antibodies varies depending
on the type of an autoimmune disease and results in different
localization of antibodies inside the nucleus, which can be
exploited for the differentiation of a diagnosis. In clinical practice,
the golden standard among laboratory tests detecting a presence
and localization of ANAs is the indirect immunofluorescence (IIF)
method [4]. This method produces patterns of stained cells by
incubating the patient's serum with a certain cell line (HEp-2) and
fluorescently labeled anti-human immunoglobulins [5–7]. The
obtained stained cells are visualized using a fluorescence micro-
scope and are analyzed by the trained personnel for establishing a
diagnosis.

There are six predefined classes to which stained cells may be
assigned (Fig. 1a) depending on the localization of antinuclear

antibodies inside a nucleus. Each image class is associated with a
single or a set of autoimmune diseases [8]. While immunofluor-
escence is known as a highly sensitive method for detecting
antinuclear antibodies [9], some studies raise a concern that the
interpretation of results depends on the personnel qualification
level and many other factors [10,11]. This necessitates automation
of the interpretation of ANA HEp-2 cell images. Several computer-
based methods for classification of cell images [12–15] as well as
preprocessing segmentation methods [16] were proposed in the
literature, but they have not been benchmarked.

Recent appearance of a publicly available dataset of ANA HEp-2
cell images [17] and the associated image classification contest [8]
can make a profound impact on the progress in this field. The
method described in this paper was presented for the first time at
that contest and here we describe it in complete detail, including
some recent improvements.

2. Methods

The main idea of our approach is to utilize for automatic
classification the morphological properties of stained-cell regions
or domains as they obviously serve as the basis for the classifica-
tion of HEp-2 cell immunofluorescent images by medical person-
nel. More specifically, we exploited the number, size, localization
and shape of the stained-cell domains. The general scheme of the
proposed method is as follows: (i) conversion of the original color
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image into a grayscale image; (ii) image thresholding using the
Otsu binarization method (Fig. 1b) [18]; (iii) extraction of image
features; (iv) image classification using a SVM classifier [19]. The
Otsu binarization and SVM methods were applied in their original
form without any modifications. Below we provide a detailed
description of the cell image features that are used for classifica-
tion. We logically divided all features into two groups based on the
extraction approach: the first group comprises features extracted
from the binary image obtained from the original image using
thresholding, while the second group of features are the ones
extracted from the original image. The full list of the image
features along with the estimates of their discrimination abilities,
calculated independently for each feature using the F-test, is
presented in Table 1. We will further refer to any connected
groups of pixels, which were assigned as foreground pixels after
the binarization, as objects.

2.1. Feature group I: features extracted from the binary image

Object number: The number of stained regions inside the cell is
clearly different among several ANA HEp-2 cell image classes. This
is a direct consequence of varying biological nature of the anti-
bodies' targets. Thus, the largest number of stained objects usually
can be found for the Centromere class of images. The antibodies’

targets of this class are the chromosome centromere proteins, so
the object number usually corresponds to the normal chromosome
number (46 for a human cell). The second largest object number
usually corresponds to the Nucleolar class of images where the
antibodies target the nucleoli. The number of nucleoli in a human
cell generally varies from one to ten depending on a cell phase
[20]. The images of the Cytoplasmatic class have a diffuse staining
throughout the cytoplasm of a cell, which after binarization often
splits into several objects. Thus, contrary to other classes, images
of the Cytoplasmatic class have a larger variance of the number of
objects in an image. The Homogeneous and both speckled classes
have, as a rule, an entirely stained nucleus, which results in
formation of a single object after binarization. The distribution of
object number across the image classes observed for images of the
ICPR HEp-2 Cells Classification Contest training dataset [8] is
shown in Fig. 2.

Object size: The cell regions targeted by antibodies in the ANA
HEp-2 test differ not only in numbers but also by size. The smallest
ones among the domains targeted by antinuclear antibodies are
the centromeric regions of chromosomes stained in the respective
class of images. The cell nucleoli that are stained in the Nucleoar
class images are slightly larger than centromeres. The largest
objects’ sizes may be attributed to the entire stained cell nuclei
of the Homogeneous and both speckled classes. At that, the two
latter have a slightly reduced size in comparison with the whole

Fig. 1. Images of ANA HEp-2 stained cells. (a) Six classes of stained-cells images defined in the course of ICPR 2012 ANA HEp-2 Cells Classification Contest and their binary
versions and (b) obtained using Otsu thresholding.

Table 1
The full list of the image features used for classification and the estimates of their
discrimination abilities calculated by F-test.

No. Image feature F-test p-value F-test rank

1 Object number 4.07E�89 7
2 Average object area 3.43E�101 5
3 Object area variance 7.75E �12 17
4 Maximum object area 1.66E�123 4
5 Hole number 8.18E�58 11
6 Average hole area 2.73E�43 15
7 Hkole area variance 4.98E�44 14
8 Maximum hole area 2.19E�59 10
9 Distance to cell boundaries 3.58E�75 9

10 Longest concave arc length 5.94E�51 13
11 LIV number 2.63E�82 8
12 Average LIV area 3.83E�20 16
13 Average LIV depth 5.37E�55 12
14 Big LIV number 1.99E�96 6
15 LIP number 3.97E�141 1
16 Average LIP area 5.74E�125 3
17 Average LIP height 1.52E�134 2

Fig. 2. Distribution of the object number for ANA HEp-2 image classes.
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nucleus due to the exclusion of negatively stained nucleoli. Size of
objects in the Cytoplasmatic class images highly depends on the
inhomogeneity of the stained cytosol area, which cause splitting of
the entire stained cytosol into several objects after binarization.
The particular features related to the size of stained objects, which
we used in our method, were the average object area, variance of
the object area and maximum of the object area. The distribution
of the mean object area across the image classes is presented in
Fig. 3.

Holes inside objects: A prominent feature that is peculiar for two
speckled classes is the negatively stained nucleoli located inside a
positively stained nucleus. The nucleoli appear in the speckled
classes of images as readily observable round dark holes inside a
bright nucleus circle. In contrast, other image classes do not
possess any similar structures except for rare artifacts. To capture
a presence of holes inside objects we introduce the following
features: the number of holes, as well as mean, variance and
maximum of the hole area. The distribution of the mean hole area
is presented in Fig. 4.

Object localization: Localization of various targets inside a cell
seems to be an important classification feature. While the stained
centromeric regions of chromosomes and nucleoli tend to be
uniformly spread throughout the entire nucleus with a gap
between them and the nucleus boundary, stained cytoplasm is
located outside of the nucleus and surrounds it being immediately
adjacent to the cell boundaries. Similar to the cytoplasmic case,
the concentration of fluorescent antibodies of the two speckled
classes is higher in the boundaries of the image, i.e. near the
nuclear membrane, due to negatively stained nucleoli. Thus, we

introduce a feature that describes whether the antibodies' targets
are located closer to the preliminary segmented boundaries of a
nucleus (or a cell in the Cytoplasmatic case), or closer to the center
of image. For that, we calculate the average of the shortest
distances from each object's pixel to the image boundaries, i.e
nucleus or cell boundaries

L¼∑i;jdi;j
N

;

where i is the object index, j is the pixel index of the ith object, di;j
is the shortest distance from the jth pixel of the ith object to the
image boundaries and N is the total number of pixels. The
distribution of this feature among image classes is shown in Fig. 5.

Object shape: The objects' outer contours represent an approx-
imate circle for the majority of image classes. The exception is the
Cytoplasmatic class where the stained cytoplasmic content that
surrounds the nucleus as a rule splits into several irregularly
shaped objects. Such objects often have an extended concave part
of the contour, which is adjacent to the nuclear membrane (Fig. 1).
This property can be useful for recognition of the Cytoplasmatic
class images (Fig. 6). The respective parameter is the length of the
longest continuous concave segment of the object's contour. To
assign a single value of this parameter to each particular image we
introduced a corresponding image feature as the maximum value
of this parameter among all image objects

C ¼max
i

fcig;

where ci is the longest continuous concave segment of contour of
the ith object.

Fig. 3. Distribution of the average object area for ANA HEp-2 image classes.

Fig. 4. Distribution of the average hole area for ANA HEp-2 image classes.

Fig. 5. Distribution of the mean distance from objects to image boundaries for ANA
HEp-2 image classes.

Fig. 6. Distribution of the longest concave arc length for ANA HEp-2 image classes.
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2.2. Feature group II: features extracted from the original image

Local intensity valleys: The main drawback of the hole detection
procedure described above, which implies the recognition of holes
from the binary image obtained using a single threshold, was
occasional loss of holes located on other intensity levels. To
overcome this problem we developed an approach for detection
of all local intensity valleys (LIV) on the original image, which can
be visually perceived as the holes in objects. For this purpose we
organized a loop that iterates through the image intensity levels
with a small step s and performs a binarization procedure at each
iteration. This allowed us to track the object holes throughout the
intensity levels gathering information about its maximum size,
and also to detect the levels at which each hole appears and
degrades. The knowledge about the depth of the intensity valley,
i.e. the value of difference between the levels of hole appearance la
and degradation ld, can help to distinguish spurious valleys due to
noise, which usually have a small depth, from the real ones, which
as a rule is of significant depth.

The introduced procedure can be summarized as follows:

� the LIV area is HS¼maxiðHSiÞ, where HSi is the area of the hole,
which corresponds to the local intensity valley detected in the
binary image generated by thresholding at the intensity level i,
iA ½la; ld�.� the LIV depth is HD¼ ld� la;� an image feature describing the number of LIVs having sig-
nificant area values is HNT ¼ jfHigj, i : HSi4TLIV_big , where
TLIV_big is the threshold on the LIV area, HSi is the area of the
ith hole, jfHigj is the number of LIVs satisfying the condition.

Local intensity peaks: Similarly to the detection of local intensity
valleys corresponding to holes in objects, we applied a procedure
that detects local intensity peaks (LIP), which correspond to
fluorescently labeled centromeric regions in Centromere images
and small bright spots inside the cell nucleus in Coarse-speckled
images. The introduced procedure iterates through the intensity
levels and tracks LIP formation starting from the brightest level of
image. To detect only small area LIPs and to distinguish them from
noise objects we defined two empirical thresholds: the first one,
TLIP_area, was established to define the maximum possible LIP area
and the second one, TLIP_height , to define the minimum contrast of
actual LIPs, i.e. the minimal allowed difference between levels of
LIP appearance and degradation. We defined the level of LIP
appearance as the intensity level at which any new object with
area less than TLIP_area has been detected in the binary image
obtained by thresholding for a current iteration. Accordingly, the
level of degradation of the LIP was defined as the intensity level at
which the area of the object exceeded the TLIP_area threshold. The
calculated LIP contrast, or the LIP height, which we defined as a
difference between levels of LIP appearance and degradation,
allowed us to differentiate actual centromeric regions from noise.
As a result, we introduced two new image features. the LIP
number and the average LIP height, which corresponded to the
number of detected small-area local intensity peaks in the image
and to the average contrast of the detected LIPs relative to the
background, respectively.

2.3. Optimization and performance evaluation

The evaluation of performance of a particular version of the
method was performed by 10-fold cross-validation on the training
set. We used Accuracy metric as the main criterium for the
estimation of the method efficiency. For deeper understanding of
the method classification quality we constructed the method
confusion matrix representing numbers of misclassification cases

between each pair of image classes. Analysis of the confusion
matrix led us to the introduction of new features aiming to
discriminate poorly separated classes. We also confirmed the
discrimination power of the proposed features using the F-test
(Table 1). Calculated F-test p-values demonstrated high, but
uneven classification ability of the image features. It was expected
because some features like the object number are different for the
majority of classes, while other features like the arc length or hole
number are specific for individual classes.

Our method has several parameters, which were optimized
using images from the training set. Most parameters were intro-
duced to distinguish real objects from noise. The complete list of
parameters is as follows: minimal object area ðTobj_areaÞ, minimal
hole area ðThole_areaÞ, maximum LIP height ðTLIP_heightÞ, maximum LIP
area ðTLIP_areaÞ, minimal big LIV area ðTLIV_bigÞ. The value of the
minimal object size was derived from the analysis of the Centro-
mere images containing the smallest stained regions among all
classes. Given knowledge of the number of chromosomes in the
cell it was relatively easy to distinguish centromere regions from
noise objects and to derive the value of Tobj_area. The value of the
minimal hole area Thole_area was set to the minimal object area.
Values of other three parameters, which were involved in the
calculation of thresholding-less image features, were optimized
based on the properties of objects obtained on the training set
using thresholding-based image features only.

To make the method universal with regard to the image
resolution, we calculated all image features in relative units. Thus,
all features that describe areas, e.g. object and hole areas, were
normalized by the cell area. All one-dimensional features were
normalized by the constant calculated as the diameter of a circle
whose area equals to the cell area.

3. Results

The key step of the ANA HEp-2 medical test is the interpreta-
tion of obtained stained patterns of HEp-2 cells for establishing a
correct diagnosis. The ANA HEp-2 test produces diverse staining
patterns due to staining of different cell regions or domains. These
domains, nucleoli, nucleus, cytosol and chromosomes, differ in
size, shape, number and localization inside the cell. This allows
interpreters to distinguish staining patterns characteristic for
different autoimmune deceases. The main idea of the proposed
approach is to segment the stained regions in the image using a
binarization technique and then to catch their structural proper-
ties as extracted features.

The classification quality of the proposed method was evalu-
ated using the MIVIA HEp-2 Images Dataset that is a publicly
available dataset of HEp-2 cell images [17]. The evaluation con-
sisted of two experiments. In the first experiment the whole
dataset was divided into the training and test sets in exactly the
same way as it was done at the ICPR 2012 HEp-2 Cells Classifica-
tion Contest [8]. These two datasets were constructed from the
original images of 28 ANA HEp-2 test slides each of which
contained several dozens of HEp-2 stained cells. All HEp-2 cells
were preliminary segmented and presented separately along with
segmentation masks. We will further refer to the images of
presegmented cells simply as cells and to the images of ANA
HEp-2 test slides simply as images. The overall accuracy, i.e. the
percentages of correctly classified cells, for training and test sets
were 95.56% (689 out of 721 cells) and 70.57% (518 out of 734
cells), respectively. The confusion matrices corresponding to the
cell classification results are presented in Tables 2 and 3, respec-
tively. Based on cell classification we further assigned class labels
to the images as the most frequent class of cells in the image. The
overall accuracies of image classification for training and test sets
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were both 100%. The confusion matrices of image-level classifica-
tion are presented in Tables 4 and 5, respectively.

In the second experiment we applied leave-one-out technique
on the image level. For the all 28 ANA HEp-2 test slide images the
same numbers of runs were performed where in each run the
method was trained on cells belonging to 27 images and then
tested on cells extracted from the remaining image. The summary
of the classification results for all images including the percentage
of correctly classified cells, as well as the cell-level and image-level
classification confusion matrices are presented in Tables 6–8.

4. Conclusions

This paper presents an automatic method for classification of
immunofluorescent cell images obtained in the ANA HEp-2 med-
ical test. The proposed method exploits the biological nature
of cell regions or domains targeted by fluorescently labeled

antibodies by assigning obtained immunofluorescent images into
six predefined classes for establishing a correct diagnosis. The
method captures the structural content of a stained cell regarding
the fluorescently labeled domains, particularly, the domain num-
ber, size, shape and localization. The obtained image features are
used for classification by means of a conventional machine-
learning algorithm. At the time of writing our method demon-
strated the highest classification quality (95.56% and 70.57%
accuracies on the training and test set, respectively) among the
methods presented at the ICPR 2012 HEp-2 Cell Classification
contest. Most of these methods are texture-based ones. Contrary
to texture-based methods, which usually use a large number of
features, our method uses a small number of features that should
decrease a computation time and facilitate further improvement of
the method. Moreover, our method is independent of the cell
image resolution. Overall, the accuracy of the best methods on the
contest's test set lies in the vicinity of 70 percent, which leaves
space for further research in this field.

Table 2
The cell-level confusion matrix obtained for the MIVIA training set. Overall accuracy is 95.56%.

Cell class Centromere (%) Homogeneous (%) Nucleolar (%) Coarse speckled (%) Fine speckled (%) Cytoplasmatic (%)

Centromere 98.56 0.96 0.48 0.00 0.00 0.00
Homogeneous 0.00 94.00 2.67 0.67 2.67 0.00
Nucleolar 0.00 0.00 100.00 0.00 0.00 0.00
Coarse speckled 0.92 0.00 0.00 99.08 0.00 0.00
Fine speckled 0.00 17.02 0.00 3.19 79.79 0.00
Cytoplasmatic 0.00 0.00 0.00 0.00 0.00 100.00

Table 3
The cell-level confusion matrix obtained for the MIVIA test set. Overall accuracy is 70.57%.

Cell class Centromere (%) Homogeneous (%) Nucleolar (%) Coarse speckled (%) Fine speckled (%) Cytoplasmatic (%)

Centromere 98.56 0.96 0.48 0.00 0.00 0.00
Homogeneous 0.00 94.00 2.67 0.67 2.67 0.00
Nucleolar 0.00 0.00 100.00 0.00 0.00 0.00
Coarse speckled 0.92 0.00 0.00 99.08 0.00 0.00
Fine speckled 0.00 17.02 0.00 3.19 79.79 0.00
Cytoplasmatic 0.00 0.00 0.00 0.00 0.00 100.00

Table 4
The image-level confusion matrix obtained for the MIVIA training set. Overall accuracy is 100%.

Image class Centromere (%) Homogeneous (%) Nucleolar (%) Coarse speckled (%) Fine speckled (%) Cytoplasmatic (%)

Centromere 100.00 0.00 0.00 0.00 0.00 0.00
Homogeneous 0.00 100.00 0.00 0.00 0.00 0.00
Nucleolar 0.00 0.00 100.00 0.00 0.00 0.00
Coarse speckled 0.00 0.00 0.00 100.00 0.00 0.00
Fine speckled 0.00 0.00 0.00 0.00 100.00 0.00
Cytoplasmatic 0.00 0.00 0.00 0.00 0.00 100.00

Table 5
The image-level confusion matrix obtained for the MIVIA test set. Overall accuracy is 100%.

Image class Centromere (%) Homogeneous (%) Nucleolar (%) Coarse speckled (%) Fine speckled (%) Cytoplasmatic (%)

Centromere 100.00 0.00 0.00 0.00 0.00 0.00
Homogeneous 0.00 100.00 0.00 0.00 0.00 0.00
Nucleolar 0.00 0.00 100.00 0.00 0.00 0.00
Coarse speckled 0.00 0.00 0.00 100.00 0.00 0.00
Fine speckled 0.00 0.00 0.00 0.00 100.00 0.00
Cytoplasmatic 0.00 0.00 0.00 0.00 0.00 100.00
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18 Homogeneous 0 0.00% 7 16.67% 1 2.38% 0 0.00% 34 80.95% 0 0.00%
19 Centromere 48 73.85% 0 0.00% 16 24.62% 1 1.54% 0 0.00% 0 0.00%
20 Nucleolar 39 84.76% 1 2.17% 6 13.04% 0 0.00% 0 0.00% 0 0.00%
21 Homogeneous 4 6.56% 45 73.77% 4 6.56% 0 0.00% 8 13.11% 0 0.00%
22 Homogeneous 2 1.68% 65 54.62% 9 7.58% 23 19.33% 9 7.56% 11 8.24%
23 Fine speckled 1 1.96% 45 88.24% 0 0.00% 4 7.84% 1 1.96% 0 0.00%
24 Nucleolar 3 4.11% 12 16.44% 56 76.71% 2 2.74% 0 0.00% 0 0.00%
25 Cytoplasmatic 10 41.67% 0 0.00% 2 8.33% 1 4.17% 0 0.00% 11 45.83%
26 Cytoplasmatic 3 8.82% 0 0.00% 0 0.00% 1 2.94% 0 0.00% 30 88.24%
27 Cytoplasmatic 0 0.00% 1 2.63% 0 0.00% 6 15.79% 0 0.00% 31 81.58%
28 Cytoplasmatic 0 0.00% 0 0.00% 1 7.69% 2 15.38% 0 0.00% 10 76.92%

Table 7
The cell-level confusion matrix obtained for the leave-one-out experiment. Overall accuracy is 54.77%.

Cell class Centromere Homogeneous (%) Nucleolar (%) Coarse speckled (%) Fine speckled (%) Cytoplasmatic (%)

Centromere 72.55 13.73 9.80 1.40 1.96 0.56
Homogeneous 3.03 58.48 7.88 7.27 19.70 3.64
Nucleolar 37.76 12.03 41.49 0.83 4.98 2.90
Coarse speckled 6.19 0.48 1.90 60.00 23.81 7.62
Fine speckled 3.37 43.75 1.44 28.85 17.79 4.81
Cytoplasmatic 11.93 0.92 2.75 9.17 0.00 75.23

Table 8
Image-level confusion matrix obtained for the leave-one-out experiment. The overall accuracy is 71.43%.

Image class Centromere (%) Homogeneous (%) Nucleolar (%) Coarse speckled (%) Fine speckled (%) Cytoplasmatic (%)

Centromere 100.00 0.00 0.00 0.00 0.00 0.00
Homogeneous 0.00 80.00 0.00 0.00 20.00 0.00
Nucleolar 50.00 0.00 50.00 0.00 0.00 0.00
Coarse speckled 0.00 0.00 0.00 80.00 20.00 0.00
Fine speckled 0.00 50.00 0.00 50.00 0.00 0.00
Cytoplasmatic 0.00 0.00 0.00 0.00 0.00 100.00
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