23

25

27

29

31

33

1	Journal of Bioinformatics and Computational Biology
	Vol. 3, No. 4 (2005) 1–13
3	© Imperial College Press

EVOLUTION OF THE NADR REGULON IN ENTEROBACTERIACEAE

ANNA V. GERASIMOVA*

7	Laboratory of Bioinformatics, State Scientific Center GOSNIIGenetika
9	1-iy Dorozhny proezd 1, Moscow, 113545, Russia $a_gerasimova@yahoo.com$
	MIKHAIL S. GELFAND
11	Institute for Information Transmission Problems, RAS
13	Bolshoy Karetny per. 19, Moscow, GSP-4, 127994, Russia gelfand@iitp.ru
	Received 5 February 2005
15	Revised 18 February 2005
	Accepted 24 February 2005
17	The NAD biosynthetic pathway and NAD transformations in <i>E. coli</i> and <i>S. typhi</i> are well characterized. Using comparative genomics methods we describe the NadR regulon
19	in other <i>Enterobacteriaceae</i> , identity new candidate regulon members and demonstrate
	that even a very simple regulon covering an essential methabolic pathway could be
21	different in closely related genomes.

comparative genomics; phylogenetic footprinting; evolution.

1. Introduction

The comparative approach to the analysis of regulation is based on the assumption that regulons are conserved in related bacteria containing ortologous transcription factors.

Keywords: NAD biosynthesis; NadR; transcription factor; regulation of transcription;

This approach, reviewed in Refs. 1–3, has been successfully applied to the analysis of many regulatory systems^{4–15} and served as a base for large-scale analyses of regulation in all prokaryotes, ^{16,17} as well as selected taxonomic groups of gamma-proteobacteria, ^{18,19} delta-proteobacteria, ²⁰ and gram-positive bacteria, ^{21,22} resulting in identification of numerous new signals and functional annotation of tens of hypothetical genes. Many of such predictions were subsequently confirmed in experiment, ^{23,24,12} or even served as a starting point for experimental

^{*}Corresponding author.

3

5

7

9

11

13

15

17

19

21

2 A. V. Gerasimova & M. S. Gelfand

analysis. ^{18,25–27} There exist several Internet servers for comparative analysis of bacterial regulation, in particular, EnteriX²⁸ and PredictRegulon. ²⁹

In an attempt to analyze the evolutionary dynamics of a relatively simple, well-studied regulon that includes genes from an essential part of the metabolism, we considered the NadR regulon in *Enterobacteriaceae*.

The nicotinamide adenine dinucleotides (NAD, NADH, NADP, NADPH) are essential cofactors in all living systems and function as hydride acceptors (NAD, NADP) and donors (NADH, NADPH) in biochemical redox reactions.³⁰ At high internal levels of NAD, the transcriptional regulator NadR represses the *de novo* synthesis and salvage pathways. NadR is a multifunctional protein, consisting of an N-terminal DNA-binding domain which represses NAD biosynthesis, a central nicotinamide mononucleotide adehyltransferase (NMNAT) domain and a C-terminal RNK domain.^{31,32}

The NAD biosynthetic pathway and transformations are shown in Fig. $1.^{31}$

Genes known to be repressed by NadR in $E.\ coli$ and $S.\ typhi$ are marked by rectangles. These are two NAD biosynthesis genes, nadA and nadB, and a niacin salvage gene $pncB.^{32,33}$

2. Data and Methods

The complete genomes of Escherichia coli K-12 MG1655³⁴ (EC), Shigella flexneri 2457T³⁵ (SF), Salmonella typhi CT18³⁶ (ST), Erwinia carotovora subsp. atroseptica SCRI1043³⁷ (ERW), Yersinia pestis CO92³⁸ (YP) and Photorhabdus luminescens subsp. laumondii TT01³⁹ (PHL) were obtained from Genbank.⁴⁰

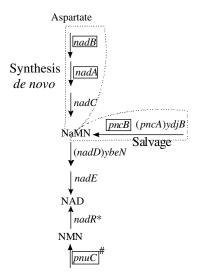


Fig. 1. The NAD biosynthetic pathway and transformations in *Enterobacteriaceae*. Notation: "*": enzymatic domain; "#": NMN transporter, regulated within the nadApnuC operon.

3

5

7

9

11

13

15

17

19

21

23

25

27

29

Incomplete genomes of Klebsiella pneumoniae MGH78578 (KP) and Serratia marcescens Db11 (SM) were downloaded from the websites of the Washington University Consortium (www.genome.wustl.edu), and Yersinia enterocolitica 8081 (YE), from the Sanger Institute website (www.sanger.ac.uk).

Profiles (positional weight matrices) for the identification of candidate NadRbinding sites were constructed using SignalX.⁴ The training set consists of upstream regions of nadA from E. coli, S. typhi and Y. pestis, nadB from E. coli and S. typhi, and pncB from E.coli, S.typhi and Y. pestis.

Sequence logo was constructed using WebLogo. 41 Orthologs were identified by the bidirectional best hits criterion⁴² and, if necessary, verified by construction of phylogenetic trees using PHYLIP.⁴³ Multiple nucleotide and protein alignments were constructed using ClustalX.⁴⁴ Genome analyses were performed using GenomeExplore.⁴⁵

3. Results and Discussion

NadR orthologs were identified in all studied Enterobacteria. Multiple protein alignment demonstrated that NadR orthologs in all considered genomes contained DNAbinding domain, NMNAT domain and RNK domain.

It is known that in some gamma-proteobacteria, for example in Haemophilus influenzae, NadR orthologs do not contain the DNA-binding domain³¹ and thus have only enzymatic, but not regulatory role. Indeed, no DNA-binding domains were found in NadR orthologs from genomes outside the Enterobacteriaceae and Pasteurellaceae families. Among the latter, Haemophilus influenzae is the only genome with NadR lacking the DNA-binding domain. NadR of other Pasteurellaceae have the DNA-binding domain, but these genomes have no nadA, nadB and pncB orthologs, nor do they have candidate sites for the enterobacterial NadR-signal. Thus here we restricted the analysis to the NadR regulon in Enterobacteriaceae.

The recognition profile was constructed as described above. The sequence logo of the NadR signal is shown in Fig. 2.

Fig. 2. Sequence logo of NadR-sites from the training set. The total height of the symbols in each position equals the positional information content, whereas the height of individual symbols is proportional to the positional nucleotide frequency, with the most frequent nucleotide shown at the top.

 $4\quad A.\ V.\ Gerasimova\ \ {\it \&M.\ S.\ Gelfand}$

				Tai	Table 1. Genes from candidate NadR regulons.	om can	didate NadR r	egulons.				
	nadB		nadA		pncB		nadR		$_{ m ynfL/M}$		rpsP	
Name Ortolc Genome Gene	Name of Ortologues Gene	Score	Name of Ortologues Gene	Score	Name of Ortologues Gene	Score	Name of Ortologues Gene	Score	Name of Ortologues Gene	Score	Name of Ortologues Gene	Score
EC	nadB	6.21	nadA	5.95	pncB	5.63	nadR		ynfL/M	4.69	rpsP	
SF	in DNA	6.21	nadA	5.95	pncB	5.63	nadR		$_{ m ynfL/M}$	4.69	rpsP	
ST	STY2834	6.21	STY0797	5.95	STY1010	90.9	nadR		STY1578/79	1	STY2863	
KP	nadB	6.21	nadA	5.95	pncB	5.11	nadR		$_{ m ynfL/M}$	4.69	in DNA	
ERW	nadB	1	ECA1378	4.62	pncB		ECA0463	5.62	ECA2259/60	4.69	ECA3359	5.10
$_{ m SM}$	nadB		nadA	5.17	pncB	5.07	nadR	5.71	$_{ m ynfL/M}$	4.69	in DNA	5.16
YP	nadB	1	nadA	4.29	pncB	4.62	nadR	5.91	in DNA/YPO2266	5.33	$_{ m rpsP}$	5.16
YE	RYE01420		RYE03344	5.86	RYE02025		RYE00967	5.63	$\mathrm{RYE}00573/74$	4.69	RYE01243	5.16
PHL	nadB		plu1468	6.43	pcnB		nadR		plu2225/24	5.33	rpsP	4.80

Notation: "+": gene with a candidate NadR-site in the upstream region; "-": gene without NadR-sites; "0": no ortholog.

*The number of candidate sites in the genome in the interval (-300) bp to (+10) bp relative to the gene start. Sites scoring higher than 4.6 are considered. No overlap with the upstream gene is allowed.

3

5

7

The signal is a palindrome with six conserved positions at each side and a spacer of six relatively less conserved positions.

The study started with identification of orthologs of genes that constitute the NadR regulon in E. coli and analysis of their regulation. The results are shown in Table 1.

NadR-sites of the nadA genes are conserved and they form the only conserved island in the alignment of upstream regulons (Fig. 3).

Additional candidate sites were identified in S. marcescens E. carotovora.

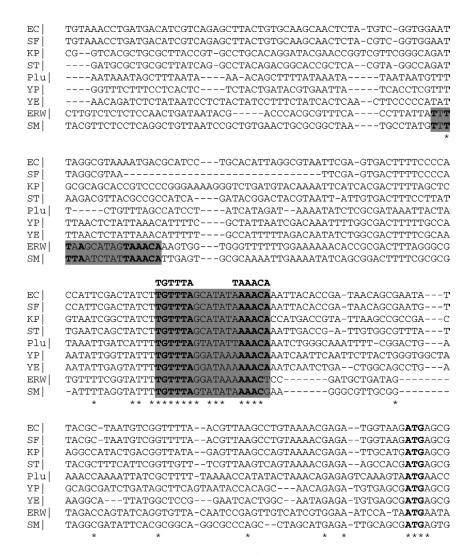


Fig. 3. Conservation of NadR-sites upstream of nadA. The sites are shadowed; positions conforming to the signal consensus and start codons (ATG) are set in boldface.

9

11

13

15

17

19

21

23

6 A. V. Gerasimova & M. S. Gelfand

```
EC
     TAACCCAACGGCCTTTTTATTTCACCACCTAATCCTCCACCAGC-----CAGTAACT
SF
     TAACCCAACGGCCTTTTTATTTCACCACCTAATCCTCCACCAGC-----CAGTAACT
ST
     TAACCTAACAGCATCTTTATTTCACTACAAAATCCGACGCTAACACCCTGCCCTATAAAA
KP
     TATCGTAACACGCCGTTTATTTCACTATAAAATCCAATGCCATCAACCTTCCCCGCGTCT
                   *****
EC
     TCTCTTTT-----TCTCGCCGCCCCTGCGTCAGCGTGTTTAGCAACTGTAACAAAT
     TCTCTTTT-----TCTCGCCGCCCTGCGTCAACGTGTTTAGCCACTGTAACAAAT
SF
ST
     KP
     CATTTTCAGCGCGCAAGACGCCGTTTCCGTTCGCCTTT-TGTTTAGCCGTCACAACAGCA
EC
     ATTA A ATTAGCAGGTGTTTATCCGCACAACATGATGCTTATGCTGACCAAACCATGTTTA
     ATTAAAATAGCAGGTGTTTATTCGCACAACATGATGCTATGCTGACCAAACAA TGTTTA
SF
     TTGAAATCATAACGTGCTTTTTAGCGCCATATAGTGCTAATCTGCCGCAACCATGTTTA(
ST
KP
     GACAAAA-AAATTGTACGATTCCTCACGGACCGGTGCTATTGTGAGCTAAATGTGTTTTAC
           TAAACA
EC
      PAAATTAAACAAAGAAAATGAATACTCTCCCTGAACATTCATGTGACGTGTTGATTATCG
      TAAATTAAACAAAGAAAATGAATACTCTCCCTGAACATTCATGTGACGTGTTGATTATT-
SF
      <u>TAAATTAAACA</u>AGAACCATGATGACAACTCCTGAACTGTCCTGTGATGTGTTAATTATCG
ST
ΚP
      TAAATTAAACAAAGACAATGAATACCACTCCTGACTTCTCTTGTGATGTGTTGATTATCG
```

Fig. 4. Conservation of NadR-sites upstream of nadB. Notation as in Fig. 3.

Unexpectedly, NadR-sites upstream of other regulon members are not well conserved in genomes other than S. typhi and E. coli.

The NadR-site upstream of nadB is conserved in $E.\ coli,\ Sh.\ flexneri,\ S.\ typhi,$ and $K.\ pneumoniae$ (Fig. 4).

The corresponding regions of other genomes are not conserved, nor they contain candidate NadR-sites.

The situation with pncB is somewhat more interesting (Fig. 5a).

The site is conserved in *E. coli, Sh. flexneri* and *S. typhi*. The corresponding region in *K. pneumoniae* and *S. marcescens* is not conserved, although there are two conservation islands on both sides. Thus the NadR sites were destroyed in these genomes. New candidate sites appeared instead and these new sites do not seem to originate from local duplications. Indeed, there is no sequence conservation around "old" and "new" NadR-sites (Fig. 5b).

No sites were found in the remaining genomes.

In an attempt to find new candidate members of the NadR regulon, we identified candidate sites and considered all genes with candidate sites in at least four genomes. Unexpectedly, one of such genes was nadR itself, that had a strong candidate site in $E.\ carotovora,\ S.\ marcescens,\ Y.\ pestis$ and $Y.\ enterocolitica$. The alignment of the upstream regions is shown in Fig. 6.

The "four-genome" condition holds in two more cases: two genes ynfL and ynfM transcribed in opposite directions, and rpsP.

The gene ynfl encodes a putative regulator from the LysR family, whereas ynfM encodes a putative transporter. We identified ynfLM ortjologs in Pseudomonas spp.

Evolution of the Nadr Regulon in Enterobacteriaceae 7

```
EC
       \texttt{GAGTCTGGTG--TTCAGTCT--ATTCCTGTT------GCGTAAATCG---CGCTATGCA}
SF
       GAGTCTGGTG--TTCAGTCT--ATTCCTGTT-----GCGTAAATCG---CGCTATGCA
       \verb|AAGTGTCGT---CCCAGTCT--ATTCCTGTT-----GTGTCAATCG---CGCTATGCA| \\
ΚP
       \verb|CACTTTCCCG--CTATGCCCC-ATCACTGCCCCAAAGCATGGTAGCAG---CGCAGTAGA| \\
ST
       \tt GAGCGGCAAGGATCGGGTCAGCGTGCATACCGAAGCCGGCTTTATCTGATTCGC{\color{red} \textbf{TGTTTA}}
SM
                       * *
EC
       {\tt GAATCTTCATCTTTTCAGGTACAAACGCCTTTATTGCTACATT-TTTATAACATACAC--}
SF
       GAATCTTCATCTTTTCAGGTACAAACGCCTTTATTGCTACATT-TTTATAACATACAC--
ΚP
       {\tt GAATCTTCATCTTTTCAACGTGAAACACGGAAATCGCTACATT-TTGTTAACACTCGCGG}
       AATCCTTAAA--TTCAAGGGGTTAGCAGTCGCATCGCTACATT-TTTATAACATGGGG--
ST
       AAATAATTAACATTATAATTTTTATGACTAATTAGGCTAAGTCATTCACCTTACAGGCAT
SM
                                          ****
       \tt CGCGTAATGCCATCGACCAGAAAGGTGGCATATGGTGTGATCGGGGTTCAATAAATT---
EC
       \tt CGCGTAATGCCATCGACCAGAAAGGTGGCATATGGTGTGATCGGGGTTCAATAAATT---
SF
KP
       CACGAAATGCCCTCGACCCGACGCAAAGCTTGTGGTGTGATCCATGTTCAATATATTAAA
       {\tt CACGAAATGCGCTCGACCCTAAAGACAGCTTATGGTGTGATCGGGGTTCAATAAATC--}
ST
       {\tt ATCTGGCTTTTTTTCTCCCCGTCGCCGC-CAGGCCGTCATAAAGGCACGTTTAATC---}
SM
                                  * *
                                        * ** **
EC
       ------GCGAAACA-----
SF
       ΚP
       \textbf{C} \texttt{TAGGCCTCGCAAATGACCGTCAGCGTCACCATTGCTCGCCATCGCGGGACAGAGTCGGG}
       ------GCTAAACA-----
ST
SM
       TGTTTA
                                                    TAAACA
       -----AGGTATACTCCAGCAGTTCCTGAAGA<mark>TGTTTA</mark>TTGTACTAAACGCTCCTGTAC-
EC
SF
       ----AGGTATACTCCAGCAGTTCCTGAAGATGTTTATTGTACTAAACGCTCCTGTAC-
       TAATAAAGGTATACTCCGCCTCCATTTTCCGCGTTGGTTTCGATGGAACGCTCCAGTGA-
KP
ST
       -----AGGTATACTCCAGCGGTTTTCTTAGTTGTTATTGTACTAAACACTCCCGTGA-
SM
       --ATCCGGGTATACTCCACCCCACTTTTATGATTATCCGGATTTGGACACGCGCCTGAC
       {\tt GAGGACGCTACTGCGCACCT} {\tt ATG} {\tt ACACAATTCGCTTCTCCTGTTCTGCACTCGTTGCTGG}
EC
       {\tt GAGGACGCTACTGCGCACCT} \textbf{ATG} {\tt ACACAATTCGCTTCTCCTGTTCTGCACTCGTTGCTGG}
       {\tt GAGGATGCTACTGCGCACC-\textbf{ATG}ACACAATTCACTTCTCCTGTACTGCACTCGCTGCTTG}
ΚP
ST
       \tt GAGGACGCAACAGCGCACCT{\color{blue} ATG} ACACAATTCGCTTCTCCTGTTCTGCACTCGTTGCTGG
SM
       \texttt{GAGGATGCTGTAACGCGCT-} \textbf{ATG} \texttt{ACTCAATACGCTTCCCCGATTTTGACATCACTGCTTG}
```

Fig. 5a. Conservation of "old" NadR-sites upstream of pncB. Notation as in Fig. 3.

		TGTTTA	TAAACA
EC	TACTCCAGCAGTTCCTGAAGA	A TGTTTA TTGTA	C TAAAC GCTCCTGTAC-GAGGACGCTACTGCGCACCT ATG
SF	TACTCCAGCAGTTCCTGAAGA	ATGTTTATTGTA	C TAAAC GCTCCTGTAC-GAGGACGCTACTGCGCACCT ATG
ST	TACTCCAGCGGTTTTCTTAGT	TGTTTATTGTA	C TAAACA CTCCCGTGA-GAGGACGCAACAGCGCACCT ATG
SM	AGCCGGCTTTATCTGATTCGC	TGTTTAAAATA	\ TTAACA TTATAATTTTTATGACTAATTAGGCTAAGTCAT
KΡ	CAAAGCTTGTGGTGTGATCC	A TGTT C A ATATA	T TAAAC T <mark>AGGCC-TCGCAAATGACCGTCAGCGTCACCA</mark>

Fig. 5b. Alignment of "new" NadR-sites upstream of pncB. Notation as in Fig. 3.

8 A. V. Gerasimova & M. S. Gelfand

		TGTTTA	TAAACA
YE	-TTTAGTCGTGTTCATCGCGCAGCATACTGTGTTATTT	T TGTTTA GTGC	GC taaaca A
YP	-TTTAATAGTGCCAATCCCGCAGCATACTGTGTTATTT	T TGTTTA GTAC	GC TAAACA A
SM	TTTTATTAATGTCGCTGACGGCGAGCAAGATATG-CTATT	T TGTTTA GCAT.	AT TAAAC GG
ERW	GAGTAGCGGACGTTGCCTTATCTTGTG-GTATT	T TGTTTA GTAG	GC taaaca A
	* * * * * * * * * * * * * * * * * * * *	****	****
YE	GGAGGCGGTATGCTGCAGTTCGACTATCTCAAAACAG	CGATTAAGCAA	AAAGGCT
YP	GGAGACCGCATGCTGCAGTTCGACTATCTCAAAACGG	CAATTAAGCAA	AAAGGCT
SM	AGGTGGCCATGCCGCAATTTGATTACCTGAAGACGT	CCATCAAGCAA	AAGGGTT
ERW	GAGTGTTGCACC ATG TCATCATTTGATTACCTGAAATCCG	CTATCCGCCAG	AAGGGTT
·	***	* ** **	** ** *

Fig. 6. Alignment of regions upstream of nadR. Notation as in Fig. 3.

		TGTTTA	TAAACA
EC	CTTATACATAGGGTAGGAAAATCGA-ATTGTT	C tgt Ct a atat	'AT TAA TA A T-CTC
SF	CTTATACATAGGGTAGGAAAATCGA-ATTGTT	C tgt Ct a atat	'AT TAA TA A T-CTC
KP	-GCTCACATTTTTAGGGTATGAAAATGTA-AATATT	C tgt Ct <mark>a</mark> atat	AT TAA TA A T-CTC
ST	-ACCGACATGTAAAGCATAGAAAAAGCAA-AATATT	C tgt Ct <mark>a</mark> atat	'AT TAA TTGT-CTC
SM	-GCAGATAACAAAATGATAGGGAGTGGCG-AATTTT	T TGT CT A ATAT	'AT TAA TA A TTCAA
YE	-TGTAATAATAGGATCATAGAAATAGCAG-AGTTTT	T TGT CT <mark>A</mark> ATAT	AT TAA TT A T-TCA
YP	-CAGAACATTTTAATCATAGAAATAGTTT-GTTTTT	T TGT CT <mark>A</mark> ATAT	'AT TAA TCAT-TGC
ERW	-AACAATAAGCCGATCATAGAAGAGTGAT-ATTATT	T TGT AT <mark>A</mark> ATAT	'AT TAA TA A T-CAT
PHL	TTATGAAGATCAAGCATATGAATTGCAA-AATATT	T TGT CT <mark>A</mark> ATAT	'AT TAA TCAT-TAA
PF	GGCAATGAAA-AAATCATATAGCTGGCTA-ATGTTT	C t atcc <mark>a</mark> atat	'AT T GTT C GA-CCT
PSY	GGCAATGAAA-AAATCATATAGCTCGCTA-ATCATT	CCA t cc a atat	AT T GTT C GA-CCT
PP	CGCAATGAAA-AAAGCATATAGCTGGCTA-ACGATT	aga t cc a atat	AT T GTT C GA-CCT
AV	GATGCCGA-CCAGCATAGGGGAGGCGATATTCCC	GGT T CC a ATAT	AT T GTT C GA-CTG
BPA	-CCGCCTGGCCACAGTAGACTTCCGGC-CGCCAT		
	**	* ****	* *
EC	AAATAAGATGTTTTAAAT ATG A		
SF	AAATAAGATGTTTTAAAT ATG A		
KP	AAATAAGACGTTTTAAAT ATG A		
ST	AAATAAGACGTTAAAAAT ATG A		
SM			AGACACCTGCGTT
YE	TAATAAGACTTTAAAAATATCACTGGAGTTGG ATG A		
YP	AAATAATACGTTTAAAATATCA ATG A		
ERW			CGTCACCTTCGCT
PHL	TAATAATATGTATTAGATCTCAAAGGTGATT- ATG G		
PF	GTTTGATAGCTTTTACGACCTAATGGGGTGC		
PSY	GTTTGATAGGTAAAACGACTTAATGGAGGCC		
PP	ATTTGAGATGTTTTACGACTTGATTGGAGCGGC		
AV	ATTTGATATGTTCTACGAATCAATGGGGCTG		
BPA	* * * * * *	ATG GAACTG	* ** * * * *
		^^ ^	

Fig. 7. Alignment of regions upstream of ynfL. Notation as in Fig. 3. Notation: "PF" — Pseudomonas fluorescens CHA0, "PSY" — Pseudomonas syringae, "PP" — Pseudomonas putida, "AV" — Azotobacter vinelandii, "BPA" — Bordetella parapertussis.

and in *Bordetella parapertussis* and constructed multiple alignment of the intergenic region in all considered genomes (Fig. 7).

3

The conserved region coincides with the spacer of the candidate NadR binding site. On the other hand, there is no NadR regulator in *B. parapertussis* and in

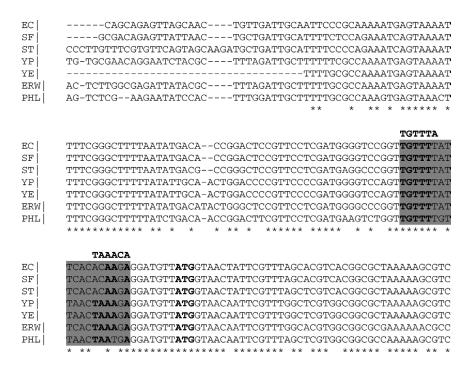


Fig. 8. Alignment of regions upstream of rpsP. Notation as in Fig. 3.

- Pseudomonas spp., and thus this region cannot be a NadR-site. Since the arrangement where a binding site occurs between a divergently transcribed regulator gene and a regulated operon is very common, we conclude that the conserved region is the YnfL binding site. However, it is a very tentative prediction, requiring an
- experimental verification. 5
 - The gene rpsP encodes small ribosomal subunit protein S16. The nucleotide sequence of the rpsP upstream regions is uniformly conserved (Fig. 8).
 - This fact and the function of RpsP makes it unlikely that the observed site is functional.

4. Conclusions

1

3

7

9

17

- This study demonstrated that even a very simple regulon covering an essen-11 tial methabolic pathway could be different in closely related genomes. Not only
- the set of regulated genes can vary, but the autoregulation of the nadR gene 13 by NadR, predicted here for the first time, is a feature of several, but not all genomes. 15
 - One of the possible explanations could be that the NadR regulon itself is rather young, as it exists in only one family of gamma-proteobacteria. However, the same behavior was observed for a number of other regulons, in particular Lrp, 46,47

FruR, ⁴⁶ KdgR. ²⁵ More sequenced genomes are needed to elucidate the exact history of the NadR regulon.

3 Acknowledgments

We are grateful to Andrei Osterman, Dmitry Rodionov, Dmitry Ravcheev and

- Gavin H. Thomas for useful discussions. This study was partially supported by grants from the Howard Hughes Medical Institute (55000309) and Russian Aca-
- 7 demic of Sciences (Programs "Molecular and Cellular Biology" and "Origin and Evolution of the Biosphere").

9 References

5

11

23

31

33

35

43

- Gelfand MS, Novichkov PS, Novichkova ES, Mironov AA, Comparative analysis of regulatory patterns in bacterial genomes, Brief Bioinform 1:357–371, 2000.
- Stojanovic N, Florea L, Riemer C, Gumucio D, Slightom J, Goodman M, Miller W,
 Hardison R, Comparison of five methods for finding conserved sequences in multiple alignments of gene regulatory regions, *Nucleic Acids Res* 27:3899–3910, 1999.
- Gelfand MS, Computational identification of regulatory sites in DNA sequences, in Frasconi P, Shamir R (eds.), Artificial Intelligence and Heuristic Methods in Bioinformatics, San-Miniato, Italy, IOS Press, pp. 148–172, 2003.
- 4. Mironov AA, Koonin EV, Roytberg MA, Gelfand MS, Computer analysis of transcription regulatory patterns in completely sequenced bacterial genomes, *Nucleic Acids Res* **27**: 2981–2989, 1999.
- Gelfand MS, Koonin EV, Mironov AA, Prediction of transcription regulatory sites in Archaea by a comparative genomic approach, *Nucleic Acids Res* 28:695–705, 2000.
 - Tan K, Moreno-Hagelsieb G, Collado-Vides J, Stormo GD, A comparative genomics approach to prediction of new members of regulons, Genome Res 11:566–584, 2001.
- Makarova KS, Mironov AA, Gelfand MS, Conservation of the binding site for the arginine repressor in all bacterial lineages, Genome Biol 2:RESEARCH0013, 2001.
- Laikova ON, Mironov AA, Gelfand MS, Computational analysis of the transcriptional regulation of pentose utilization systems in the gamma subdivision of Proteobacteria,
 FEMS Microbiol Lett 205:315–322, 2001.
 - 9. Panina EM, Mironov AA, Gelfand MS, Comparative analysis of FUR regulons in gamma-proteobacteria, *Nucleic Acids Res* **29**:5195–5206, 2001.
 - Permina EA, Mironov AA, Gelfand MS, Damage-repair error-prone polymerases of eubacteria: association with mobile genome elements, Gene 293:133–140, 2002.
 - 11. Rodionov DA, Mironov AA, Gelfand MS, Conservation of the biotin regulon and the BirA regulatory signal in Eubacteria and Archaea, *Genome Res* 12:1507–1516, 2002.
- Panina EM, Mironov AA, Gelfand MS, Comparative genomics of bacterial zinc regulons: enhanced ion transport, pathogenesis, and rearrangement of ribosomal proteins, Proc Natl Acad Sci U S A 100:9912–9917, 2003.
- 13. Liu J, Tan K, Stormo GD, Computational identification of the Spo0A-phosphate regulon that is essential for the cellular differentiation and development in Grampositive spore-forming bacteria, Nucleic Acids Res 31:6891–6903, 2003.
 - Permina EA, Gelfand MS, Heat shock (sigma32 and HrcA/CIRCE) regulons in betagamma- and epsilon-proteobacteria, J Mol Microbiol Biotechnol 6:174–181, 2003.
- Erill I, Escribano M, Campoy S, Barbe J, In silico analysis reveals substantial variability in the gene contents of the gamma proteobacteria LexA-regulon, *Bioinformatics* 19:2225–2236, 2003.

15

47

- 1 16. Manson McGuire A, Church GM, Predicting regulons and their cis-regulatory motifs by comparative genomics, Nucleic Acids Res 28:4523–4530, 2000.
- 3 17. McGuire AM, Hughes JD, Church GM, Conservation of DNA regulatory motifs and discovery of new motifs in microbial genomes, Genome Res 10:744–757, 2000.
- 5 18. McCue L, Thompson W, Carmack C, Ryan MP, Liu JS, Derbyshire V, Lawrence CE, Phylogenetic footprinting of transcription factor binding sites in proteobacterial 7 genomes, Nucleic Acids Res 29:774–782, 2001.
 - 19. Rajewsky N, Socci ND, Zapotocky M, Siggia ED, The evolution of DNA regulatory regions for proteo-gamma bacteria by interspecies comparisons, Genome Res 12:298-308, 2002.
- 20. Rodionov DA, Dubchak I, Arkin A, Alm E, Gelfand MS, Reconstruction of regulatory 11 and metabolic pathways in metal-reducing delta-proteobacteria, Genome Biol 5:R90, 13
 - 21. Terai G, Takagi T, Nakai K, Prediction of co-regulated genes in Bacillus subtilis on the basis of upstream elements conserved across three closely related species, Genome Biol 2:RESEARCH0048, 2001.
- 22. Alkema WB, Lenhard B, Wasserman WW, Regulog analysis: detection of conserved 17 regulatory networks across bacteria: application to Staphylococcus aureus, Genome 19 Res 14:1362-1373, 2004.
- 23. Rodionov DA, Mironov AA, Rakhmaninova AB, Gelfand MS, Transcriptional regula-21 tion of transport and utilization systems for hexuronides, hexuronates and hexonates in gamma purple bacteria, Mol Microbiol 38:673-683, 2000.
- 23 24. Ramirez-Santos J, Collado-Vides J, Garcia-Varela M, Gomez-Eichelmann MC, Conserved regulatory elements of the promoter sequence of the gene rpoH of enteric 25 bacteria, Nucleic Acids Res 29:380-386, 2001.
- 25. Rodionov DA, Gelfand MS, Hugouvieux-Cotte-Pattat N, Comparative genomics of 27 the KdgR regulon in Erwinia chrysanthemi 3937 and other gamma-proteobacteria, Microbiology 150:3571-3590, 2004.
- 29 26. Yellaboina S, Ranjan S, Chakhaiyar P, Hasnain SE, Ranjan A, Prediction of DtxR regulon: identification of binding sites and operons controlled by Diphtheria toxin 31 repressor in Corynebacterium diphtheriae, BMC Microbiol 4, 2004.
- 27. Erill I, Jara M, Salvador N, Escribano M, Campoy S, Barbe J, Differences in LexA reg-33 ulon structure among Proteobacteria through in vivo assisted comparative genomics, Nucleic Acids Res 32:6617-6626, 2004.
- 35 28. Florea L, McClelland M, Riemer C, Schwartz S, Miller W, EnteriX 2003: Visualization tools for genome alignments of Enterobacteriaceae, Nucleic Acids Res 31:3527–3532, 37 2003.
- 29. Yellaboina S, Seshadri J, Kumar MS, Ranjan A, PredictRegulon: a web server for the 39 prediction of the regulatory protein binding sites and operons in prokaryote genomes, Nucleic Acids Res 32(Web Server issue):W318–320, 2004.
- 41 30. Begley TP, Kinsland C, Mehl RA, Osterman A, Dorrestein P, The biosynthesis of nicotinamide adenine dinucleotides in bacteria, Vitam Horm 61:103-119, 2001.
- 31. Kurnasov OV, Polanuyer BM, Ananta S, Sloutsky R, Tam A, Gerdes SY, Osterman 43 AL, Ribosylnicotinamide kinase domain of NadR protein: identification and implica-45 tions in NAD biosynthesis, J Bacteriol 184:6906–6917, 2003.
 - Penfound T, Foster JW, NAD-dependent DNA-binding activity of the bifunctional NadR regulator of Salmonella typhimurium, J Bacteriol 181:648–655, 1999.
- 33. Foster JW, Park YK, Penfound T, Fenger T, Spector MP, Regulation of NAD 49 metabolism in Salmonella typhimurium: molecular sequence analysis of the bifunctional nadR regulator and the nadA-pnuC operon, J Bacteriol 172:4187–4196, 1990.

13

15

17

19

27

29

12 A. V. Gerasimova & M. S. Gelfand

- 1 34. Blattner FR *et al.*, The complete genome sequence of Escherichia coli K-12, *Science* **277**:1453–1474, 1997.
- 3 35. Wei J et al., Complete genome sequence and comparative genomics of Shigella flexneri serotype 2a strain 2457T, Infect Immun 71:2775–2786, 2003.
- 5 36. Parkhill J et al., Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18, Nature 413:848–852, 2001.
- 37. Bell KS et al., Genome sequence of the enterobacterial phytopathogen Erwinia carotovora subsp. atroseptica and characterization of virulence factors, Proc Natl Acad
 9 Sci U S A 101: 11105-11110, 2004.
 - 38. Parkhill J et al., Genome sequence of Yersinia pestis, the causative agent of plague, Nature 413:523–527, 2001.
 - 39. Duchaud E *et al.*, The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens, *Nat Biotechnol* **21**:1307–1313, 2003.
 - Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL, GenBank, Nucleic Acids Res 31:23–27, 2003.
 - 41. Schneider TD, Stephens RM, Sequence Logos: A New Way to Display Consensus Sequences, *Nucleic Acids Res* **18**: 6097–6100, 1990.
 - Tatusov RL, Galperin MY, Natale DA, Koonin EV, The COG database: a tool for genome-scale analysis of protein functions and evolution, *Nucleic Acids Res* 28:33–36, 2000.
- Felsenstein J, Evolutionary trees from DNA sequences: a maximum likelihood approach, J Mol Evo 17:368–376, 1981.
- 44. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG, The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality
 analysis tools, Nucleic Acids Res 24:4876–4882, 1997.
 - 45. Mironov AA, Vinokurova NP, Gel'fand MS, Software for analyzing bacterial genomes, *Mol Biol (Mosk)* **34**:253–262, 2000.
 - 46. Friedberg D, Midkiff M, Calvo JM, Global versus local regulatory roles for Lrp-related proteins: Haemophilus influenzae as a case study, *J Bacteriol* **183**:4004–4011, 2001.
- 47. Gelfand MS, Laikova ON, in *Frontiers in Computational Genomics*, Michael YG and Eugene VKC (eds.), Academic Press, Wymondham, UK, pp. 203–204, 2003.
- Anna V. Gerasimova is a graduate student in the Laboratory of Bioinformatics,

 State Scientific Center GosNIIGenetika, Moscow, Russia. She obtained her M.S. in Biophysics from Moscow Engineering Physics Institute (Technical University) in 2002. Her research interests are in comparative genomics and molecular evolution.
- Mikhail S. Gelfand is the Head of the Research and Training Center in Bioinformatics of the Institute for Information Transmission Problems, RAS in Moscow, Russia and a Professor at the Department of Bioengineering and Bioinformatics of the Moscow State University. He graduated from the Department of Mathematics of the Moscow State University, received his Ph.D.
- (Math.) degree from the Institute of Theoretical and Experimental Biophysics,
 RAS (Pushchino), and the Doctor of Sciences degree from the State Research
 Institute for Genetics and Selection of Industrial Microorganisms (Moscow). He
 is a member of editorial boards of several journals, in particular, "PLoS Biology",

- "Bioinformatics", "BMC Bioinformatics", "Journal of Bioinformatics and Compu-1 tational Biology" and "Journal of Computational Biology". He received the A. A.
- Baev prize (1999) from the Russian State "Human Genome" Council, and "The 3 Best Scientist of the Russian Academy of Sciences" award (2004). His research
- interests include comparative genomics, metabolic reconstruction and modeling, 5 evolution of metabolic pathways and regulatory systems, function and evolution of
- 7 alternative splicing, functional annotation of genes and regulatory signals.